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Abstract

Genome-wide association studies (GWAS) are now used routinely to identify SNPs associated with complex human
phenotypes. In several cases, multiple variants within a gene contribute independently to disease risk. Here we introduce a
novel Gene-Wide Significance (GWiS) test that uses greedy Bayesian model selection to identify the independent effects
within a gene, which are combined to generate a stronger statistical signal. Permutation tests provide p-values that correct
for the number of independent tests genome-wide and within each genetic locus. When applied to a dataset comprising 2.5
million SNPs in up to 8,000 individuals measured for various electrocardiography (ECG) parameters, this method identifies
more validated associations than conventional GWAS approaches. The method also provides, for the first time, systematic
assessments of the number of independent effects within a gene and the fraction of disease-associated genes housing
multiple independent effects, observed at 35%–50% of loci in our study. This method can be generalized to other study
designs, retains power for low-frequency alleles, and provides gene-based p-values that are directly compatible for
pathway-based meta-analysis.
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Introduction

Traditional single-SNP GWAS methods have been remarkably

successful in identifying genetic associations, including those for

various ECG parameters in recent studies of PR interval (the

beginning of the P wave to the beginning of the QRS interval) [1],

QRS interval (depolarization of both ventricles) [2] and QT

interval (the start of the Q wave to the end of the T wave) [3–5].

Much of this success has relied upon increasing sample size

through meta-analyses across multiple cohorts, rather than

through the use of novel analytical methods to increase power.

One analytical approach, gene-based tests proposed during the

initial development of GWAS [6], has natural appeal. First,

variations in protein-coding and adjacent regulatory regions are

more likely to have functional relevance. Second, gene-based tests

allow for direct comparison between different populations, despite

the potential for different linkage disequilibrium (LD) patterns

and/or functional alleles. Third, these analyses can account for

multiple independent functional variants within a gene, with the

potential to greatly increase the power to identify disease/trait-

associated genes.

Despite these appealing properties, gene-based and related

multi-marker association tests have generally under-performed

single-locus tests when assessed with real data [7,8]. A general

drawback of methods that attempt to exploit the structure of LD to

reduce the number of tests, for example through principal

component analysis, is the loss of power to detect low-frequency

alleles. Methods that consider multiple independent effects often

require that the number of effects be pre-specified [9], which loses

power when the tested and true model are different.

Multi-locus tests often have the additional practical drawback of

being highly CPU and memory intensive. Several methods use

Bayesian statistics to drive a brute-force sum or Monte Carlo

sample over models [10,11], but again often restrict the search to

one or two-marker associations. In general, the computational

costs have made these approaches infeasible for genome-wide

applications.

The Gene-Wide Significance (GWiS) test addresses these

problems by performing model selection simultaneously with

parameter estimation and significance testing in a computational

framework that is feasible for genome-wide SNP data (see

Methods). Model selection, defined as identifying the best tagging

SNP for each independent effect within a gene, uses the Bayesian

model likelihood as the test statistic [12–14]. Our innovation is to

use gene regions to impose a structured search through locally

optimal models, which is computationally efficient and matches

the biological intuition that the presence of one causal variant

within a gene increases the likelihood of additional causal effects.

Models are penalized based on the effective number of in-

dependent SNPs within a gene and the number of SNPs in the
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model, akin to a multiple-testing correction. The Schwarzian

Bayesian Information Criterion corrects for the difference between

the full model likelihood and the easily computed maximum

likelihood estimate [15]. This method has greater power than

current methods for genome-wide association studies and provides

a principled alternative to ad hoc follow-up analyses to identify

additional independent association signals in loci with genome-

wide significant primary associations.

Results

Reference genotype and phenotype data
The ECG parameters PR interval, QRS interval and QT

interval are ideal test cases because recent large-scale GWAS

studies have established known positive associations. These traits

are all clinically relevant, with increased PR interval associated

with increased risk of atrial fibrillation and stroke [16], and both

increased QRS and QT intervals associated with mortality and

sudden cardiac death [17–20]. We assessed the ability of standard

methods and GWiS to rediscover these known positives using data

from only the Atherosclerosis Risk in Communities (ARIC) cohort,

which contributes 15% of the total sample size for QRS, 25% for

PR, and 50% for QT (Table 1).

The SNPs were assigned to genes based on the NCBI Homo

sapiens genome build 35.1 reference assembly [21]. Gene boun-

daries were defined by the most 5’ transcriptional start site and 3’
transcriptional end position for any transcript annotated to a gene,

yielding 25,251 non-redundant transcribed gene regions. Incor-

porating additional flanking sequence increases coverage of more

distant regulatory elements, which increases power, but also

increases the number of SNPs tested, which decreases power.

Expression quantitative trait loci (eQTL) mapping in humans has

shown that most cis-regulatory SNPs are within 100 kb of the

transcribed region [22,23], with quantitative estimates that w93%
of large effect eQTNs (functional nucleotides that create eQTLs)

are within 20 kb of the transcribed region [24]. We report results

for 20 kb flanking regions; the performance ranking is robust to

flanking by up to 100 kb (Table S1). SNPs within these regions are

then assigned to one or more genes. Of the approximately 2.5

million genotyped and imputed SNPs, about 1.4 million are

assigned to at least one gene. The median number of SNPs per

gene is 43 and the mean is 72 (Table 1), reflecting a skewed

distribution with many small genes having few SNPs.

The ‘‘gold standard’’ known positives rely on previously

published meta-analyses of PR interval [1], QRS interval [2]

and QT interval [4,5]. We first identify gold-standard SNPs

having pv5|10{8. Any gene within 200 kb of a gold-standard

SNP is classified as a known positive, and known positives within a

200 kb window are merged into a single locus, yielding 38 known

positive gene-based loci. This procedure was followed to ensure

that each association signal results in a single locus as opposed to

being split between adjacent loci, which could result in over-

counting.

Other methods
The minSNP test uses the p-value for the best single SNP within

a gene. The minSNP-P test converts this SNP-based p-value to a

gene-based p-value by performing permutation tests within each

gene. BIMBAM averages the Bayes Factors for subsets of SNPs

within a gene, with restriction to single-SNP models recommended

for genome-wide applications [10]. Because the Bayes Factor sum

is dominated by the single best term, results for BIMBAM are

very similar to minSNP-P. The Versatile Gene-Based Test for

Genome-wide Association (VEGAS) [25] is a recent multivariate

method that sums the association signal from all the SNPs within a

gene and corrects the sum for LD to generate a test statistic. The

x2 terms summed by VEGAS are asymptotically equivalent to the

negative logarithms of the Bayes Factors summed by BIMBAM.

LASSO regression, or L1 regularized regression, is a multivariate

method that combines sparse model selection and parameter

optimzation [26–28], with promising recent applications to GWAS

[29]. See Methods for more details.

Simulated data and power
Power calculations used genotypes from the ARIC population

to ensure realistic LD. Phenotypes were then simulated for genetic

models with one or more causal variants within a gene. GWiS was

the best-performing method, with an advantage growing as more

Table 1. Populations, genes, and SNPs used in this study.

PR QRS QT

Individuals, published GWAS 28,517 47,797 15,842/13,685

Individuals, this study 7,076 7,250 7,771

Individuals, this study relative to
published

25% 15% 49%/57%

Genes, total 25,251

Genes, at least one SNP assigned 24,337

SNPs, total 2,557,232

SNPs, assigned to at least one gene 1,392,262

SNPs, average per gene 72

SNPs, median per gene 43

Effective tests, average per gene 9.3

Effective tests, median per gene 7.3

For SNP assignment, gene regions are defined to include 20 kb flanking
transcription boundaries.
doi:10.1371/journal.pgen.1002177.t001

Author Summary

Genome-wide association studies (GWAS) have successful-
ly identified genetic variants associated with complex
human phenotypes. Despite a proliferation of analysis
methods, most studies rely on simple, robust SNP–by–SNP
univariate tests with ever-larger population sizes. Here we
introduce a new test motivated by the biological
hypothesis that a single gene may contain multiple
variants that contribute independently to a trait. Applied
to simulated phenotypes with real genotypes, our new
method, Gene-Wide Significance (GWiS), has better power
to identify true associations than traditional univariate
methods, previous Bayesian methods, popular L1 regular-
ized (LASSO) multivariate regression, and other approach-
es. GWiS retains power for low-frequency alleles that are
increasingly important for personal genetics, and it is the
only method tested that accurately estimates the number
of independent effects within a gene. When applied to
human data for multiple ECG traits, GWiS identifies more
genome-wide significant loci (verified by meta-analyses of
much larger populations) than any other method. We
estimate that 35%–50% of ECG trait loci are likely to have
multiple independent effects, suggesting that our method
will reveal previously unidentified associations when
applied to existing data and will improve power for future
association studies.

Gene-Based Tests of Association
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independent effects are present (Figure 1a). Theoretically, GWiS

should have lower power than single-SNP tests when the true

model is a single effect; according to the ‘‘no free lunch theorem’’,

this loss of power cannot be avoided [30]. The performance of

GWiS therefore depends on the genetic architecture of a disease or

trait: higher power if genes house multiple independent causal

variants, and lower power if each gene has only a single causal

variant. In practice, the loss of power was so slight as to be virtually

undetectable.

Of the other methods, minSNP-P and BIMBAM had similar

performance that degraded as the true model included more

SNPs. The VEGAS test did not perform well, presumably because

the sum over all SNPs creates a bias to find causal variants in LD

blocks represented by many SNPs and to miss variants in LD

blocks with few SNPs. In the absence of LD, with genotypes and

phenotype simulated using PLINK [31], VEGAS performs better

(Figure S1). The LASSO method performed worst.

The advantage of GWiS arises in part from better power to

detect associations with low-frequency alleles (Figure 1b). GWiS,

minSNP-P, and BIMBAM have roughly constant power for a

given variance explained, regardless of minor allele frequency. In

contrast, both VEGAS and LASSO suffer from a two-fold loss of

power when minor allele frequencies drop from 50% to 5%.

VEGAS may lose power because these low-frequency SNPs lack

correlation with other SNPs, reducing the contribution to the

VEGAS sum statistic. The LASSO penalty shrinks the regression

coefficient, which may adversely affect SNPs with large regression

coefficients that balance low minor allele frequencies.

Simulated data and model size
The model size selected by GWiS and LASSO was evaluated by

simulation (Figure 2). These simulations also used the ARIC

population to supply realistic LD, with genes selected at random

with replacement from chromosome 1. In chromosome 1, the

number of SNPs in a gene ranges from 1 to over 1000, and the

number of independent effects ranges from 1 to over 100, similar

to the distributions in the genome as a whole (Figure S2). A subset

of SNPs within a gene had causal effects assigned (‘‘True K ’’),

phenotypes were simulated to mimic weak and strong gene-based

signals, and then models were selected by GWiS and LASSO.

Model selection to retain a subset of SNPs (‘‘Estimated K ’’) was

performed both for the full genotype data and for the genotype

data with the causal SNPs all removed.

GWiS provides a better estimate of the true model size than

LASSO, assessed from the R2 of estimated versus true K . With

causal SNPs kept, R2 for GWiS is substantially higher, 0.65 versus

0.47 at low power (Figure 2a, 2c) and 0.81 versus 0.60 at high

power (Figure 2b, 2d). GWiS also performs better when causal

SNPs are removed, 0.55 versus 0.33 at low power and 0.60 versus

0.39 at high power. GWiS also provides a conservative estimate of

the model size, with the ratio of estimated to true size ranging from

a worst-case of 44% (low power, causal SNPs removed) to a best-

case of 81% (high power, causal SNPs kept) over the four scenarios

examined. In contrast, LASSO is prone to over-predict the size of

the model, with a worst-case of models that are on average 33%

too large (high power, causal SNPs kept, Figure 2d).

Removing a causal SNP results in GWiS predicting a smaller

model, with the ratio of estimated to true K dropping from 0.55 to

0.44 for low power and from 0.85 to 0.81 for high power. These

reductions in model size are highly significant (p v2|10{16 for

both, Wilcoxon pair test) and counter a concern that the absence

of a causal variant from a marker set will inflate the model size by

introducing multiple markers that are partially correlated with the

untyped causal variant.

These results demonstrate that the model size returned by

GWiS is conservative for causal variants with small effects, and

approaches the true model size for causal variants with large

effects.

Application to ECG data
We then obtained p-values from GWiS, minSNP, minSNP-P,

BIMBAM, VEGAS, and LASSO for the ARIC data. Permutations

Figure 1. Estimated power at genome-wide significance for simulated data. Power estimates for GWiS (black), minSNP-P (blue), BIMBAM
(dashed blue), VEGAS (green), and LASSO (red) are shown for 0.007 population variance explained by a gene. Genes were selected at random from
Chr 1; genotypes were taken from ARIC; and phenotypes were simulated according to known models with up to 8 causal variants with independent
effects. (a) Power decreases as total variance is diluted over an increasing number of causal variants. (b) Power estimates with 95% confidence
intervals are shown as a function of minor allele frequency (MAF) for the simulations from panel (a) with a single independent effect. GWiS, minSNP,
minSNP-P, and BIMBAM are robust to low minor allele frequency, whereas VEGAS and LASSO lose power.
doi:10.1371/journal.pgen.1002177.g001

Gene-Based Tests of Association
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of phenotype data holding genotypes fixed [32] provided

thresholds for genome-wide significance for each method (Table

S2). Due to LD across genes, a strong signal in one gene can lead to

a neighboring gene reaching genome-wide significance. This effect

is well known, and scoring these as false positives would unduly

penalize traditional univariate tests. Instead, neighboring genes

reaching genome-wide significance were merged, and overlap

(even partial) with a known positive was scored as a true positive.

GWiS out-performed all other methods in the comparison

(Figure 3 and Table 2). GWiS identifies 6 of 38 known genes or

loci as genome-wide significant. In contrast, BIMBAM identifies 5

known positives; minSNP, minSNP-P and VEGAS identify 4; and

LASSO identifies 2. Loci identified by the other methods are all

subsets of the 6 found by GWiS. None of the methods produced

any false positives at genome-wide significance.

Due to the limited size of the ARIC cohort relative to the studies

that generated the known positives, no method was expected to

find all 38 known loci to be genome-wide significant. Nevertheless,

known positives should still rank high among the top predictions of

each method, assessed by the ranks of the known positives at 40%

recall (Figure S3). We found that GWiS, minSNP, minSNP-P,

BIMBAM, and VEGAS were equally effective in ranking known

positives (Mann-Whitney rank sum p-values §0:78 for any

pairwise comparison). LASSO performed below the other

methods (p-value ƒ0:04 for a pairwise comparison of LASSO

to any other method). Top associations (up to 100 false positives)

from each method are provided for PR interval, QRS interval,

and QT interval (Tables S3, S4, S5).

While our conclusions are based on cardiovascular phenotypes,

the results suggest that GWiS will have an advantage when causal

genes have multiple effects. When an association is sufficiently

strong to be found by a univariate test, GWiS is generally able to

identify it. Beyond these association, GWiS is also able to detect

genes that are genome-wide significant, but where no single effect

is large enough to be significant by univariate tests. The asso-

ciation of QRS interval with SCN5A-SCN10A is a striking

example: 4 independent effects are found by GWiS (p-value

= 3:4|10{12) but the association is not genome-wide significant by

univariate methods (p-value = 4:4|10{5 for minSNP-P) (Figure 4).

A common follow-up strategy for single-SNP methods is to search

for secondary associations in the same locus as a strong primary

association. These results for ARIC together with results above for

simulated data (Figure 2) demonstrate that GWiS performs this

task well. While this feature is present in previous follow-up

methods for candidate loci [11,33,34], it is absent from methods

generally used for primary analysis of GWAS data.

Figure 2. Model size estimation. The ability to recover the known model size was evaluated for GWiS (a and b) and LASSO (c and d). The power to
detect a single SNP was set to be 10% (a and c) and 80% (b and d). In separate tests, the causal SNPs were either retained in (black) or removed from
(red) the genotype data.
doi:10.1371/journal.pgen.1002177.g002

Gene-Based Tests of Association
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Of the 38 known positives, 20 have GWiS models with at least

one SNP (regardless of genome-wide significance), and 7 of these

are predicted to have multiple independent effects (Figure 5).

These results suggest that the genetic architecture of ECG traits

supports the hypothesis underlying GWiS. Moreover, for QT

interval where the power is greatest to identify known positives (the

ARIC sample size is 50% of the GWAS discovery cohorts), 5 of

the 10 loci identified by GWiS are predicted to have multiple

independent effects.

Discussion

In summary, we describe a new method for gene-based tests of

association. By gathering multiple independent effects into a single

test, GWiS has greater power than conventional tests to identify

genes with multiple causal variants. GWiS also retains power for

low-frequency minor alleles that are increasingly important for

personal genetics, a feature not shared by other multi-SNP tests.

Furthermore, GWiS provides an accurate, conservative estimate

for the number of independent effects within a gene or region.

Currently there are no standard criteria for establishing the

genome-wide significance of a weak second association in a gene

whose strongest effect is genome-wide significant. While the

number of effects can be provided by existing Bayesian methods

[34], their computational expense has limited their applicability to

candidate regions, and they are not routinely used. By providing a

computationally efficient alternative to existing methods, GWiS

provides a new capability to estimate the number of effects as part

of primary GWAS data analysis. Demonstrated effectiveness on

real data may lead to more widespread use of this type of analysis.

Applied to cardiovascular phenotypes relevant to sudden cardiac

death and atrial fibrillation, GWiS indicates that 35 to 50% of all

known loci contain multiple independent genetic effects.

The test we describe includes a prior on models designed to be

unaffected by SNP density, in particular by the number of SNPs

that are well-correlated with a causal variant. The priors on

regression parameters are essentially uniform, with the benefit of

eliminating any user-adjustable parameters. A theoretical draw-

back is that the priors are improper [35,36]. Theoretical concerns

are mitigated, however, because improper priors pose no challenge

for model selection, and our permutation procedure ensures

uniform p-values under the null.

Bayesian methods can be computationally expensive. GWiS

minimizes computation by evaluating only the locally optimal

models of increasing size in a greedy forward search. This appears

to be an approximation compared to previous Bayesian methods

that sum over all models. Previous Bayesian methods entail their

own approximations, however, because the search space must

either be truncated at 1 or 2 SNPs, heavily pruned, or lightly

sampled using Monte Carlo. Our results demonstrate that the

Figure 3. Recovery of known positive associations at genome-wide significance. Of 38 known positives, GWiS identified 6 at genome-wide
significance with no false positives. Univariate methods (minSNP and minSNP-P) and VEGAS identified a subset of 4 entirely contained by GWiS, and
LASSO identified a smaller subset of 2.
doi:10.1371/journal.pgen.1002177.g003
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approximations used by GWiS provide greater computational

efficiency than approximations used in previous Bayesian

frameworks, with no loss of statistical power. GWiS currently

calculates p-values, rather than Bayesian evidence provided by

other Bayesian methods. If Bayesian evidence is desired, an

intriguing alternative to Bayesian post-processing of candidate loci

might be to use the Bayes Factor from the most likely alternative

model identified by GWiS as a proxy for the sum over all

alternatives to the null model. This may be an accurate ap-

proximation because, in practice, the Bayes Factor for the most

likely model from GWiS dominates all other Bayes Factors in the

sum.

The GWiS framework, using gene annotations to structure

Bayesian model selection, may be applied to case-control data by

encoding phenotypes as 1 (case) versus 0 (control), a reasonable

approach when effects are small. More fundamental extensions to

logistic regression, Transmission Disequilibrium Tests (TDTs),

and other tests and designs should be possible and may yield

further improvements. Moreover, similar gene-based structured

searches can be applied to genetic models to include explicit

interaction terms [14]. The Bayesian format also permits

incorporation of prior information about the possible functional

effects of SNPs [37,38], and disease linkage [39,40]. Finally, the

gene-based p-values provide a natural entry to gene annotations

and pathway-based gene set enrichment analysis [41–43].

Materials and Methods

Ethics statement
This research involves only the study of existing data with

information recorded in such a manner that the subjects cannot be

identified directly or through identifiers linked to the subjects.

Known positives
Known positive associations are taken from published genome-

wide significant SNP associations (p-value v5|10{8) [1,2,4,5].

Genes within 200 kb of any genome-wide significant SNP are

scored as known positives. Finally, genes within 200 kb that are

both positive are merged into a single known positive locus to

avoid over-counting.

Study cohort
The ARIC study includes 15,792 men and women from four

communities in the US (Jackson, Mississippi; Forsyth County,

North Carolina; Washington County, Maryland; suburbs of

Minneapolis, Minnesota) enrolled in 1987-89 and prospectively

followed [44]. ECGs were recorded using MAC PC ECG

machines (Marquette Electronics, Milwaukee, Wisconsin) and

initially processed by the Dalhousie ECG program in a central

laboratory at the EPICORE Center (University of Alberta,

Edmonton, Alberta, Canada) but during later phases of the study

using the GE Marquette 12-SL program (2001 version) (GE

Marquette, Milwaukee, Wisconsin) at the EPICARE Center

(Wake Forest University, Winston-Salem, North Carolina). All

ECGs were visually inspected for technical errors and inadequate

quality. Genotype data sets were cleaned initially by discarding

SNPs with Hardy-Weinberg equilibrium violations at p v

0:00001, minor allele frequencies v0:01, or call rates v0:95.

Imputation with HapMap CEU reference panel version 22 was

then performed, and all imputed SNPs were retained for analysis,

included imputed SNPs with minor-allele frequencies as low as

0.001. These cleaned data sets contributed to the meta-analysis to

yield the known positives, and full descriptions of phenotype and

sample data cleaning are available elsewhere [1,2,4]. Regional
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Figure 4. Multiple weak effects identified as genome-wide significant. GWiS correctly identifies the SCN5A-SCN10A locus as genome-wide
significant with four independent effects, even though the strongest single effect has a p-value 100| worse than the genome-wide significance
threshold indicated as a dashed line. No other method was able to identify this locus as genome-wide significant. The SNPs selected by GWiS are
represented as large, colored diamonds, and SNPs in LD with these four are colored in lighter shades. The light blue trace indicates recombination
hotspots.
doi:10.1371/journal.pgen.1002177.g004

Figure 5. Distribution of the number of independent effects in ECG loci. Of 38 known positive loci, GWiS identified 20 loci, and 7 of these
contain multiple independent effects.
doi:10.1371/journal.pgen.1002177.g005
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association plots were generated using a modified version of

‘‘make.fancy.locus.plot’’ [45].

Conventional multiple regression
The phenotype vector Y for N individuals is an N|1 vector of

trait values. The genotype matrix X has N rows and P columns,

one for each of P genotyped markers assumed to be biallelic SNPs.

For simplicity, the vector Y and each column of X are stan-

dardized to have zero mean. A standard regression model esti-

mates the phenotype vector as Y~Xbze, where b is a vector of

regression coefficients and e is a vector of residuals assumed to be

independent and normally distributed with mean 0 and variance

s2 . The log probability of the phenotypes given these parameters is

log Pr (Yjb,s2,X)~{
1

2
N ln (2p)zN ln (s2)z

jY{Xbj2

s2

( )
: ð1Þ

The maximum likelihood estimators (MLEs) are ŝs2~

jY{Xbj2=N and b̂~(X’X){1X’Y, where X’ denotes the trans-

pose of X. The total sum-of-squares (SST) is jYj2, and the sum-of-

squares of the model (SSM) is ĵYj2~Y’X(X’X){1X’Y . The sum-

of-squares of the errors or residuals (SSE) is

SSE~SST{SSM~jY{Xb̂j2~jYj2{ĵYj2: ð2Þ

A conventional multiple regression approach uses the F-statistic

to decide whether adding a new SNP improves the model

significantly,

F~
SSM=K

SSE=(N{K{1)
ð3Þ

for a model with K SNPs, distributed as F (K,N{K{1) under the

null. This approach fails, however, when the best K SNPs are

selected from the much larger number of M total SNPs, because

the F statistic does not account for the selection process.

Bayesian model selection
A model M is defined as the subset of K SNPs in a gene with P

total SNPs that are permitted to have non-zero regression

coefficients. For each gene, GWiS attempts to find the subset that

maximizes the model probability Pr (MjY,X), where each of the P

columns of X corresponds to a SNP assigned to the gene. In the

absence of association, the null model with K = 0 usually maximizes

the probability, indicating no association. When a model with Kw0
maximizes the probability, an association is possible, and permu-

tation tests provide a p-value. According to Bayes rule,

Pr (MjY,X)~ Pr (YjM,X) Pr (M)=Pr (Y): ð4Þ

The factor Pr (Y) is model-independent and can be ignored.

The prior probability of the model, Pr (M), assumes that each of

the P SNPs within the gene has an identical probability of being

associated with the trait. This probability, denoted f, is unknown,

and is integrated out with a uniform prior. The prior is also designed

to make the model probability insensitive to SNP density: it should

be unaffected if an existing SNP is replicated to create a new SNP

marker with identical genotypes. We do this by replacing the

number of SNPs within a gene with an effective number of tests, T ,

calculated from the local LD within a gene. Correlations between

SNPs make the effective number of tests smaller than the number of

SNPs. The model prior based on the effective number of tests is

Pr (M)~

ð1

0

f K (1{f )T{K df:Beta(Kz1,T{Kz1), ð5Þ

or K !(T{K)!=(Tz1)! for integer values. As the effective number

of tests, T , whose calculation is described below, is generally non-

integer, we use the standard Beta function rather than factorials.

The remaining factor in Eq. 4 is

Pr (YjM,X)~

(ABK ){1

ðA

0

dt

ðB=2

{B=2

db (t=2p)N=2 exp½{(t=2)jY{Xbj2�:
ð6Þ

The integration limits and prefactor 1=ABK ensure normaliza-

tion. We assume that these limits are sufficiently large to permit a

steepest descents approximation as in Schwarzian BIC model

selection [15]. First, assuming that the genotypes are centered, the

genotype covariance matrix is
XX

X0X=N, where 0 indicates

matrix transpose as before, and diagonal elements Skk&
2pk(1{pk) for SNP k with allele frequency pk. Provided that B
is much greater than each component of b̂~(X0X){1X0Y, the

integral over b is approximately

Pr (YjM,X)~

(ABK det
X1=2

){1N{K=2

ðA

0

dt(t=2p)(N{K)=2 exp½{(t=2)SSE�,
ð7Þ

where the sum-squared-error SSE is jY{Xb̂j2. Provided that the

limit A is much greater than the maximum likelihood value

~tt~(N{K)=SSE:1=~ss2, the integral over t can be approximated as

ðA

0

dt(t=2p)(N{K)=2 exp½{(t=2)SSE�&

(2=SSE)1z(N{K)=2(1=2p)(N{K)=2C½1z(N{K)=2�,
ð8Þ

where C(x) is the standard Gamma function. To avoid the cost of

Gamma function evaluations, we instead use the steepest descents

approximation,

ðA

0

dt(t=2p)(N{K)=2 exp½{(t=2)SSE�&

½2p=(N{K)~ss4�1=2
(1=2p~ss2)(N{K)=2e{(N{K)=2:

ð9Þ

The log-likelihood is then

ln Pr (YjM,X)~{½(N{K)=2�½1z ln (2p~ss2)�{(K=2) ln N

{ ln (ABK det
X1=2

)z(1=2) ln½2p=(N{K)~ss4�: ð10Þ
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As in the BIC approximation, we retain only terms that depend

on the model and are of order ln N or greater. Thus we replace

N{K by N, and ~ss2&ŝs2. For historical reasons, we also included

a factor of (2p)K=2 in the prior for model size, to yield the

asymptotic approximation

ln Pr (YjM,X)&{(N=2)½1z ln (2pŝs2)�{(K=2) ln (N=2p): ð11Þ

The strategy of GWiS is therefore to find the model that

maximizes the objective function

Pr (MjY,X)&{(N=2)½1z ln (2pŝs2)�{

(K=2) ln (N=2p)z ln Beta(Kz1,T{Kz1):
ð12Þ

The terms involving K provide a Bayesian penalty for model

performance, but also make this an NP-hard optimization

problem. We have adopted two efficient deterministic heuristics

for approximate optimization. First is a greedy forward search,

essentially Bayesian regularized forward regression, in which the

SNP giving the maximal increase to the model likelihood is added

to the model sequentially until all remaining SNPs decrease the

likelihood. The second is a similar heuristic, except that the initial

model searches through all subsets of 2 SNPs or 3 SNPs. We

adopted this subset search to permit the possibility that all K = 1

models are worse than the K = 0 null, whereas a more complex

model with K~2 or 3 has higher score. In practice, all associations

identified by subset selection were also identified by greedy

forward search. We therefore used the greedy forward search for

computational efficiency.

GWiS is designed to select a single model for each gene. An

alternative related approach would be to test for the posterior

probability of the null model, Pr (noSNPsjdata), against all other

models, Pr (1SNPjdata) + Pr (2SNPsjdata) + Pr (3SNPsjdata) +
. . ., using our model selection procedure either to choose the

locally best model of each size or to include multiple models

(which could suffer from a systematic bias favoring SNPs in large

LD blocks). This is in fact the strategy of BIMBAM, which

attempts to systematically evaluate all terms up to a given model

size. Unfortunately, the number of terms increases exponentially

fast with model size, and the brute-force approach does not scale

to genome-wide applications. Monte Carlo searches over models

have also been difficult to apply genome-wide. Our work suggests

that approximations that limit the search for fixed model size can

be accurate, and further that the probabilities of models that are

too large are expected to decrease exponentially fast, permitting

the sum to be pruned and truncated. We have observed in practice

that the model with the most likely value of K dominates the sum,

and similarly for BIMBAM that the single SNP with the best Bayes

Factor dominates the sum-of-Bayes-Factors test statistic. These

results suggest that the results of a more computationally expensive

sum over all models would be largely consistent with the results of

GWiS method. Furthermore, the Bayes Factor for the most likely

model could provide a proxy for the Bayesian evidence.

Effective number of tests
The effective number of tests is an established concept in

GWAS to provide a multiple-testing correction for correlated

markers. While the exact correction can be established by

permutation tests, faster approximate methods can perform well

[46–49]. While we use a fast procedure, a final permutation test

ensures that p-values are uniform under the null.

The method we adopt is based on multiple linear regression of

SNPs on SNPs. The genotype vector xi for each SNP i is

standardized to have zero mean. Correlations between all pairs of

SNPs i and j are initialized as Cij~xi
0xj=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jxijjxjj

p
. Each SNPs

weight wi is initialized to 1, and the number of effective tests T is

initialized to 0. The SNP i with maximum weight is identified, and

the following updates are executed:

T/Tzwi

wj/max(wj{C2
jiwi,0) for all SNPs j: ð13Þ

This process continues until all weights are equal to zero.

When SNPs with maximum weight are tied (as occurs for the first

SNP processed), the SNP with lowest genomic coordinate is

selected to ensure reproducibility; we have ensured that this

method is robust to other methods for breaking ties, including

random selection. For simplicity, the correlations are not updated

(the update rule would be Cjk/max½Cjk{CjiCki=wi,0�), which

may lead to an overestimate for T. Model selection may therefore

have a conservative bias. The p-values are not affected, however,

because they are calculated by permutation tests as described

below.

The effective number of tests implies a trivial renormalization of

the model prior, (Eq. 5), that does not affect the test statistic.

Letting T be the total number of markers, N be the effective

number tests, and K be the size of the model, our prior gives each

model of size K the weight ½(Nz1)C(N,K)�{1
. If N and T are

identical, there are C(N,K) models of this size, and the total

weight of all models of size K is 1=(Nz1). Since K can range

from 0 to N , the sum is normalized. But when T is larger than N,

the sum of all models of size K is C(T ,K)=(Nz1)C(N,K), which

is §1=(Nz1). The sum from K~0 to T is therefore

§(Tz1)=(Nz1)§1. A normalization of 1 can be recovered

by including an overall normalization factor, Q~(Nz1){1XN

K~0
C(T ,K)=C(N,K). The explicit prior for models of size

K is Pr (K)~½Q(Nz1)C(N,K)�{1
, which is normalized to 1.

Since Q is model-independent, it does not contribute to the test

statistic.

P-values and genome-wide significance
We use two stages of permutation tests: the first stage converts

the GWiS test statistic into a p-value that is uniform under the

null; the second stage establishes the p-value threshold for genome-

wide significance.

The first stage is conducted gene-by-gene. We permute the trait

array using the Fisher-Yates shuffle algorithm [50,51] and use the

permuted trait to calculate the test statistics using the same

procedure as for the original trait. Specifically, the model size K is

optimized independently for each permutation, with most per-

mutations correctly choosing K = 0. For S successes (log-likeli-

hoods greater than or equal to the unpermuted phenotype data)

out of Q permutations, the empirical p-value is S/Q. To save

computation, permutations are ended when S§10. Furthermore,

once a finding is genome-wide significant, there is no practical

need for additional permutations. For gene-based tests (GWiS,

minSNP-P, BIMBAM, and VEGAS), the p-value for genome-wide

significance depends on the number of genes tested (rather than

the number of SNPs),

p=10{5 for humans. We therefore also terminate permutations

after Q = 1 million trials, regardless of S. In these cases, for

Gene-Based Tests of Association
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purposes of ranking, a parametric p-value is estimated for GWiS as

P½F (SSM=SSE,K,T{K{1)�|C(T ,K): ð14Þ

The first factor is the parametric p-value for the F statistic from

the MLE fit, and the second term is the combinatorial factor for

the number of possible models of the same size.

While these p-values are uniform under the null, the threshold

for genome-wide significance requires a second set of permuta-

tions. To establish genome-wide significance thresholds, in the

second stage we permuted the ARIC phenotype for each trait 100

times, ran GWiS for the permuted phenotypes on the entire

genome, and recorded the best genome-wide p-value from each of

the 100 permutations. We then combined the results from each

trait to obtain an empirical distribution of the best genome-wide p-

value under the null. We then estimated the p = 0.05 genome-wide

significance threshold as the 15th best p-value of the 300.

This procedure was performed for GWiS, minSNP, minSNP-P,

LASSO, and VEGAS to obtain genome-wide significance

thresholds for each. Since minSNP-P and BIMBAM are both

uniform under the null, we used the genome-wide significance

threshold calculated for minSNP-P, 3|10{6, for BIMBAM to

avoid additional computional cost (Table S2). The threshold for

GWiS is more stringent, 2|10{6, presumably because of the locus

merging procedure described below. Changes in the genome-wide

significance thresholds of up to 50% would not affect any of the

reported results.

Hierarchical analysis of genetic loci
In a region with a strong association and LD, GWiS can

generate significant p-values for multiple genes in a region. A

hierarchical version of GWiS is used to distinguish between two

possibilities. First, through LD, a strong association in one gene

may cause a weaker association signal in a second gene. In this

case, only the strong association should be reported. Second, the

causal variant may not be localized in a single gene; for example,

the best SNP tags are assigned to multiple genes. In this case, the

individual genes should be merged into a single associated locus.

The hierarchical procedure is as follows.

1. Identify all genes with GWiS pƒ0:01, and use transitive

clustering to merge into a locus all genes whose transcript

boundaries are within 200 kb.

2. Run GWiS on the merged locus (including a recalculation of

the number of effective tests within the locus) and identify the

SNPs selected by the GWiS model. If genes at either end of the

locus have no GWiS SNPs, trim these genes from the locus.

Repeat this step until no more trimming is possible. If only a

single gene remains, accept it with its original p-value as the

only association in the region. Otherwise, proceed to step 3.

3. Use a permutation test to calculate the p-value for the merged

locus from step 2. Assign it a p-value equal to the minimum of

the p-values from the individual genes, and the p-value from its

own permutation. Regardless of the p-value used, retain the

entire trimmed region as an associated locus.

The trimming in step 2 handles the first possibility, a strong

association in one gene that causes a weaker association in a

neighbor. The rationale for accepting the smallest p-value in step 3

is the case of a single SNP assigned to multiple genes. The merged

region will have a less significant p-value than any single gene, and

it does not seem reasonable to incur such a drastic penalty for gene

overlap.

Univariate tests: minSNP and minSNP-P
For these tests, SNPs are assigned to gene regions as before. The

p-value for each SNP is then calculated using the F-statistic as the

test statistic, with empirical p-values from permutation to ensure

correct p-values for SNPs with low minor allele frequencies. The

minSNP method assigns a gene the p-value of its best SNP.

Selection of the best p-value out of many leads to non-uniform p-

values under the null. It is standard to reduce this bias by scaling p-

values by a Bonferroni correction based on the number of SNPs or

number of estimated tests. Instead, we perform gene-by-gene

permutation tests using the best F statistic for SNPs within the gene

as the test statistic. As with GWiS, if 1 million permutations do not

lead to one success, the association is clearly genome-wide sig-

nificant and we use the Bonferroni-corrected p-value for ranking

purposes.

BIMBAM
The Bayesian Imputation-based Association Mapping (BIM-

BAM) is a Bayesian gene-based method [10]. BIMBAM calculates

the Bayes Factor for a model and then averages the Bayes Factors

for all models within a gene to obtain a test statistic. Because 1-

SNP models were found to have as much power as 2-SNP models,

and because 2-SNP models are not computationally feasible for

genome-wide analysis, BIMBAM by default restricts its sum to all

1-SNP models within a gene [10]. The Bayes Factor BF (i) for a

single SNP i is

BF (i)~Pr(YjX)=Pr(Y) ð15Þ

~jVj1=2
N1=2s{1

a

Y0Y{B0V{1B

Y0Y{N �YY 2

� �{N=2

:

The design matrix X has first column 1s and second column

equal to the dosages of SNP i in the N individuals; �YY is the

phenotypic mean; V~(tzX0X){1; the matrix t is diagonal with

diagonal terms (0,s{2
a ); and B contains the regression coefficients

B~VX0Y. We used the recommended value sa~0:2 relative to

the phenotypic standard deviation. The test statistic for a gene

with T SNPs is T{1
XT

i~1
BF (i). As with other methods, we used

gene-by-gene permutations to convert this statistic into a p-value

that is uniform under the null. Up to 1 million permutations were

used, stopping after 10 successes.

The sufficient statistics used by BIMBAM are identical to

minSNP and minSNP-P, yet we found that the runtime of the

public implementation was much slower, taking 270 sec for 1000

permutations of a gene with 135 SNPs across 8000 individuals. By

improving memory management and optimizing computations,

we improved the timing to 14 sec per 1000 permutations, a 19-fold

speed-up. This implementation is included in our Supplementary

Materials.

VEGAS
The Versatile Gene-Based Test for Genome-wide Association

(VEGAS) [25] is a recently proposed method that considers the

SNPs within a gene as candidates for association study. VEGAS

assigns SNPs to each of the autosomal genes using the UCSC

genome browser hg18 assembly. The gene boundaries are defined

as +50kb of the 5’ and 3’ UTRs. Single SNP p-values are used to

compute a gene-based x2 test statistic for each gene and sig-

nificance of each gene is evaluated using simulations from a
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multivariate normal distribution with mean 0 and covariance

matrix being the pairwise LD values between the SNPs from

HapMap Phase 2. As a result the method avoids permutations in

calculating per gene p-values, although permutations are required

to obtain the genome-wide significance threshold.

LASSO regression
LASSO regression is a recent method for combined model

selection and parameter estimation that maps L1 regularized

regression onto a computationally tractable quadratic optimization

problem [26–28]. Applications to GWAS are attractive because it

is possible to perform model selection on an entire chromosome.

We therefore implemented a recent LASSO procedure developed

specifically for GWAS [29].

To reduce computational cost, univariate p-values are estimated

from parametric tests, and gene-based SNPs with pv0:001 are

retained (we have confirmed that this computational constraint

does not lose any known positive associations). Incremental model

selection was performed by Least Angle Regression [27] using the

R lars package [52]. The LASSO parameter was determined using

5-fold cross validation. All genes with at least one SNP selected

were identified, and selected genes overlapping other selected

genes (including flanking regions) were merged into single loci.

As suggested previously, we used the Selection Index to rank

genes and as the test statistic for a permutation p-value [29]. To

obtain the Selection Index, the MLE log-likelihood is calculated

for the full model and for a reduced model with a subset of SNPs

removed. Twice the log-likelihood difference is interpreted as a x2

statistic, and the Selection Index is defined as the corresponding p-

value for a x2 distribution with the number of removed SNPs as

the degrees of freedom. Due to the LASSO model selection

procedure, the Selection Index is not distributed as a x2 under the

null, and permutation tests are used to establish genome-wide

significance levels.

Simulations: power
For each true model size of K~1 to 8, we performed a series of

simulations by picking 1000 genes from chromosome 1 randomly

with replacement, using genotype data from the ARIC population

of approximately 8000 individuals. For each gene, we selected K
‘‘causal’’ SNPs that have R2

v0:5 from regression with other

‘‘causal’’ SNPs within the gene. A gene had to have at least 2K
SNPs to be picked for models of size K to ensure enough

remaining SNPs after the removal of the causal SNPs to permit a

model of the true size.

We attempted to distribute the total population variance

explained, V~0:007, equally across the K SNPs. The covariance

matrix for the SNPs calculated from the population is denoted S,

with S{1
ij understood to be (S{1)ij . The coefficient bk for SNP k

in the model was set to

bk~+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V=

XK

i, j~1

S
1=2
ii S{1

ij S
1=2
jj

vuut :
XK

l~1

S{1
kl S

1=2
ll , ð16Þ

which ensures that var(Xb)~V . The phenotype Y for an

individual with genotype row-vector X was then calculated as

Y~(X{m):bzu
ffiffiffiffiffiffiffiffiffiffiffiffi
1{V
p

, with m again the population average of

X and u drawn from a standard normal distribution.

The power was calculated as (number of genes that are genome-

wide significant)/1000, and the error of the estimate was

calculated using 95% exact binomial confidence intervals. The

p-value thresholds were taken directly from genome-wide per-

mutations (Table 2).

Simulations: model size
Phenotypes that were used to estimate the model size were

generated by assigning each ‘‘causal’’ SNP the same power of 0.1

and 0.8. The population variance explained for each SNP was

calculated as V~(za{z1{power)
2=N, in which za is the quantile of

the standard normal for upper-tail cumulative probability of a,

and z1{power is the quantile for lower-tail probability 1{power.

We chose a to be 5|10{8, the commonly used genome-wide

significance threshold for univariate tests. The effect of SNP k is

then bk~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V=Skk

p
, in which

P
is the genotype covariance

matrix. The simulated phenotypes are then (X{m)bzu
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{KV
p

,

with u drawn from a standard normal distribution. In this test we

control for the variance explained by the SNP, not by the gene,

and therefore do not rescale the regression coefficients to account

for LD. For each K ranging from 0 to 10, we repeated these steps

using ARIC genotype data for 100 genes chosen at random from

chromosome 1.

Only GWiS and LASSO give model size estimates. GWiS

directly reports the model size as the number of independent

effects within a gene and LASSO reports the model size as the

number of selected SNPs within a gene. We ran both methods

using the simulated data with LD. We also tested both scenarios

when the causal SNPs were kept or removed from gene.

Performance evaluation
Gene associations were scored as true positives if the gene (or

merged locus) overlapped with a known association, and as false

positives if no overlap exists. Only the first hit to a known

association spanning several genes was counted.

The primary evaluation criterion is the ability to identify known

positive associations at genome-wide significance. The genome-

wide significance threshold was determined separately for each

method (see above), and no method gave any false positives at its

appropriate threshold.

A secondary criterion was the ability to enrich highly ranked

loci for known associations, regardless of genome-wide signifi-

cance. This criterion was assessed through precision-recall curves,

with precision = TP/(TP+FP), recall = TP/(TP+FN), and true

positives (TP), false positives (FP), and false negatives (FN) defined

as a function of the number of predictions considered.

Small differences in precision and recall may not be statistically

significant. To estimate statistical significance, we performed

a Mann-Whitney rank sum test for the ranks of the known

associations at 40% recall for GWiS, minSNP, minSNP-P, and

LASSO.

Implementation
GWiS runs efficiently in memory and CPU time, roughly

equivalent to other genome-wide tests that require permutations

(Table 3). Computational times are greater for real data because

real associations with small p-values require more permutations.

LASSO required far less computational resources, but also pre-

filtered the SNPs and had the worst performance. Genome-wide

studies can be finished within around 100 hours. Low memory

requirements allow GWiS to run in parallel on multiple CPUs.

The GWiS source code implementing GWiS, minSNP, minSNP-

P, and BIMBAM is available under an open source GNU General

Public License as Supplementary Material, also from the authors’

website (www.baderzone.org), and is being incorporated into

PLINK [31].
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Supporting Information

Figure S1 Estimated power at genome-wide significance for

genotypes simulated without LD. Simulation tests were performed

for true models in which a single gene housed one to eight

independent causal variants. Genotypes were simulated with

20 SNPs per gene, no LD between SNPs, and minor allele

frequencies selected uniformly between 0.05 and 0.5. Power

estimates are provided for VEGAS (green), GWiS (black),

minSNP-P (blue), BimBam (blue dashed), and LASSO (red).

While VEGAS performs well in the absence of LD, its per-

formance degrades under realistic LD (see main text, Figure 1).

We simulated genetic models for quantitative traits with no linkage

disequilibrium between SNPs using the simulate-qt option of

PLINK. Genes were simulated with 20 SNPs and minor allele

frequencies selected uniformly between 0.05 and 0.5. Genotypes

were coded as allele dosages from 0 to 2. The power of a standard

regression test for additive effects depends on the population

variance explained, V~2p(1{p)b2 for a single variant with allele

frequency p and regression coefficient (or effect size) b. We

performed simulations holding V constant and sampling different

allele frequencies, adjusting the effect size to obtain the desired

variance explained, V~0:007. For each choice of the true model

size K from 1 to 8, we averaged over 1000 simulations each with

8000 individuals. In each simulation, we randomly selected K

SNPs to be ‘‘causal’’ SNPs and distributed the variance equally

across the causal SNPs, with each SNP contributing variance

V=K . The resulting model for the phenotype Y of an individual

with genotype row-vector X for the K causal SNPs is Y~
(X{m):bzu

ffiffiffiffiffiffiffiffiffiffiffiffi
1{V
p

, where m is the true population average of X,

b is the column-vector of SNP effects, and u is drawn from a

standard normal distribution. The resulting value for the

component of b for a causal SNP with minor allele frequency p
is b~+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(V=K)=2p(1{p)

p
. The power was calculated as

(number of genes that are genome-wide significant)/1000, and

the error of the estimate was calculated using 95% exact binomial

confidence intervals. The p-value thresholds for genome-wide

significance came from genome-wide permutations of actual data

for GWiS, BimBam, minSNP-P and VEGAS. For LASSO,

however, the selection index threshold from the genome-wide

permutations may not be appropriate for simulations without LD.

We therefore used a slightly different approach for LASSO. We

calculated a null distribution of the selection index through

permutations, and then used this null distribution to convert the

selection index to a gene-based p-value. The p-value was then

compared to the most lenient gene-based threshold of the other

methods, 3|10{6 from minSNP-P.

(TIF)

Figure S2 Number of SNPs and effective number of tests per

gene. The number of SNPs and effective tests per gene are

displayed as a density plot for (a) chromosome 1 and (b) the

autosomal genome. While on average genes have 70 SNPs and 9

tests, large genes can have over 1000 SNPs and 100 tests.

(TIF)

Figure S3 Precision-recall curves for recovery of known

associations. Precision and recall for recovery of 38 known

associations are shown for GWiS (black), minSNP (thin blue),

minSNP-P (thick blue), BIMBAM (dashed blue), LASSO (red),

and VEGAS (green). Ranking is by p-value for GWiS, minSNP,

minSNP-P, and VEGAS, and by Selection Index for LASSO. The

tails of the curves for GWiS and LASSO are truncated when

remaining loci have no SNPs entered into models, which occurs

close to 50% recall. Triangles indicated the last genome-wide

significant finding from each method.

(TIF)

Table S1 Number of identified genome-wide significant loci.

Results are reported for 20 kb and 100 kb flanking transcription

boundaries. G: GWiS, S: minSNP, SP: minSNP-P, B: BIMBAM,

V:VEGAS, L: LASSO. *BIMBAM was only tested for 20 kb.

**VEGAS is hard-coded to use +50kb.

(PDF)

Table S2 Genome-wide significance thresholds calculated by

permutation. Results are reported for 20 kb and 100 kb flanking

transcription boundaries. Thresholds for GWiS, minSNP,

minSNP-P and VEGAS are for p-values. Threshold for LASSO

are for the selection index. The thresholds for minSNP and

LASSO decrease because the larger threshold implies more tests.

GWiS and minSNP-P already include a correction for the number

of tests within a gene, and thresholds are somewhat less stringent

for longer gene boundaries. *BIMBAM uses the threshold from

minSNP-P because both tests provide gene-based p-values with

identical uniform distributions under the null. **VEGAS is hard-

coded to use +50kb.

(PDF)

Table S3 Top associations for PR interval. The top 100

associations are reported for GWiS, minSNP, minSNP-P,

BIMBAM, VEGAS, and LASSO. The locus name concatenates

Table 3. Memory and CPU requirements.

Memory (GB) CPU time (Hours)

Method Phenotype Null Real Null Real

GWiS PR 1.2 1.2 9.4 43.1

QRS 1.2 1.2 11.0 31.9

QT 1.2 1.2 11.2 67.0

minSNP PR 0.6 0.6 13.6 62.0

QRS 0.6 0.6 15.8 45.9

QT 0.6 0.6 16.1 96.4

minSNP-P PR 0.6 0.6 11.9 54.2

QRS 0.6 0.6 13.8 40.1

QT 0.6 0.6 14.0 84.3

BIMBAM PR 0.6 0.6 14.1 42.3

QRS 0.6 0.6 16.5 33.2

QT 0.6 0.6 16.8 101.5

VEGAS PR 32.5 8.2 26.0 34.0

QRS 26.0 11.9 23.9 29.8

QT 25.8 14.1 27.1 33.0

LASSO PR 0.1 0.1 0.2 0.4

QRS 0.1 0.1 0.3 0.3

QT 0.1 0.1 0.2 0.4

The minimal memory requirement and the total CPU time to finish one
genome-wide study are reported for both a null (shuffled) trait and the real
trait. Benchmarks were obtained from AMD Operon 2.3GHz or similar
processors. The memory and CPU requirements include the model selection
and the calculation of the gene-based p-values (or selection index). Costs for
the genome-wide permutations to establish genome-wide significance
thresholds are not included in the estimates. LASSO consumes the least
resources because it pre-filters the SNPs (only uses SNPs having p-values
v0:001) and does not require permutations to calculate the selection index.
The real phenotypes require more CPU time because more permutations are
required to calculate genome-wide significant p-values for true associations.
doi:10.1371/journal.pgen.1002177.t003
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the named genes within the start and end positions indicated.

Additional columns provide the number of SNPs, the effective

number of tests, the number of independent associations within

the region (K ), the p-value (P), the rank from 1 through 100, and

an indicator for known positives (isKnownPositive).

(XLS)

Table S4 Top associations for QRS interval. The column

information is the same as for Table S3.

(XLS)

Table S5 Top associations for QT interval. The column

information is the same as for Table S3.

(XLS)
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