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Abstract

The millions of mutations and polymorphisms that occur in human populations are potential predictors of disease, of our
reactions to drugs, of predisposition to microbial infections, and of age-related conditions such as impaired brain and
cardiovascular functions. However, predicting the phenotypic consequences and eventual clinical significance of a
sequence variant is not an easy task. Computational approaches have found perturbation of conserved amino acids to be a
useful criterion for identifying variants likely to have phenotypic consequences. To our knowledge, however, no study to
date has explored the potential of variants that occur at homologous positions within paralogous human proteins as a
means of identifying polymorphisms with likely phenotypic consequences. In order to investigate the potential of this
approach, we have assembled a unique collection of known disease-causing variants from OMIM and the Human Genome
Mutation Database (HGMD) and used them to identify and characterize pairs of sequence variants that occur at
homologous positions within paralogous human proteins. Our analyses demonstrate that the locations of variants are
correlated in paralogous proteins. Moreover, if one member of a variant-pair is disease-causing, its partner is likely to be
disease-causing as well. Thus, information about variant-pairs can be used to identify potentially disease-causing variants,
extend existing procedures for polymorphism prioritization, and provide a suite of candidates for further diagnostic and
therapeutic purposes.
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Introduction

The publicly available dbSNP database [1] contains approxi-

mately 12 million unique human sequence variants, few of which

are associated with any particular phenotype or disease. Large-

scale association studies often produce hundreds of first ‘‘hits’’ in

the form of individual SNPs or haplotypes that then need to be

‘‘characterized’’ for a potential role in a disease phenotype; see [2–

4]. Currently, there exist few methods for prioritizing variations in

a locus for use in association studies or to determine post-facto

whether an association found in a genome wide association study

is likely to hold up to further testing.

The large number of uncharacterized SNPs has driven the

development of computational methods aimed at identifying those

variations likely to cause disease. To date, the most successful

approaches to in silico SNP characterization have been protein-

based and comparative in nature, namely SIFT [5–7] and

PolyPhen [8–9]. These approaches, often collectively referred to

as Amino Acid Substitution, or AAS, approaches (for a review, see

[4]), examine non-synonymous changes in human proteins in the

context of multiple alignments of homologous proteins from other

organisms. The assumption is that variants effecting amino acid

replacements rarely seen in a given column of the multiple

alignment will adversely impact protein function and perhaps

cause disease [4]. However, the complex relationship between

sequence conservation, protein function and disease poses a

difficult problem for comparative approaches. For some proteins,

conservative changes in poorly conserved regions may be the only

tolerated changes, and even these may have severe phenotypic

consequences; in other cases, even non-conservative changes that

destroy protein function may not be disease-causing, especially for

non-essential, redundant genes. These considerations suggest that

algorithms for the identification of disease-causing variations based

upon trends in protein sequence conservation will miss many

particular instances.

Given these issues, we wondered whether paralogous human

genes might provide a source of additional information for in silico

variation characterization, one complementary to AAS approach-

es such as SIFT [5–7] and PolyPhen [8,9]. By ‘paralogous genes’

we mean ‘‘Genes that have arisen by gene duplication events in an

organism and are transmitted to offspring as a gene family’’[10].

By this criterion, over half of human genes have at least one

paralog. The advantage of using paralogous genes is that

information from them is uncomplicated by issues that surround

PLoS Computational Biology | www.ploscompbiol.org 1 November 2008 | Volume 4 | Issue 11 | e1000218



attempts to compare allelic data between multiple organisms. In

order to explore the utility of paralogous genes for purposes of

phenotypic in silico variation characterization and prioritization,

we have systematically examined the genome-wide distribution of

sequence variants along the lengths of paralogous proteins.

To further test the clinical relevance of these data, we have also

assembled a collection of known disease-causing variations drawn

from OMIM [11] and HGMD [12]; both of these databases

provide extensive documentation of disease-causing sequence

variations. We then mapped each of these variations to their

gene annotations and protein sequences. This dataset has allowed

us to identify and characterize pairs of variations that occur at

homologous positions within human disease genes (Figure 1). We

find that sequence variants co-occur at aligned amino acid pairs

more frequently than expected by chance, suggesting that similar

functional constraints on paralogous protein sequences result in

coordinated distributions of both disease and non–disease-causing

variants along their lengths. Moreover, our disease-gene analyses

demonstrate that if one member of a variant-pair is disease-causing,

its partner is likely to be disease-causing as well. Thus, knowledge of a

sequence variant’s paralogous relationships is useful for purposes of

in-silico identification of novel disease-causing alleles.

Results

Genome-wide analysis of dbSNP polymorphisms
In order to investigate the genome-wide distribution of coding

sequence variants within paralogous genes, we used two methods to

assemble sets of paralogous genes. First, we identified a set of best-hit

gene pairs, e.g. every pair of genes whose proteins hit one another

with a BLASTP Expect,1e26. In total this set contained 17,111

human genes (termed ‘Best-hits’). Second, we identified a sub-set of

7,368 reciprocal best-hit (BLASTP Expect,1e26) proteins, which is

an even stronger criterion for paralogous genes; we term these

Reciprocal Best-hit gene pairs. The motivation behind this

procedure was to test two definitions of paralogs: a less-stringent

and a more stringent. Defining paralogs simply as ‘‘Genes that have

arisen by gene duplication events in an organism and are transmitted

to offspring as a gene family’’ [10], overlooks the fact that it is

possible to distinguish two types of paralogs by homology: those that

are merely homologous to one another, and those that are each

others best hit, e.g. reciprocal best hit pairs. These are more similar

to one another than they are to any other member of their gene

family. Thus the two sets of paralogs (Table 1) allowed us to ask if the

positions of coding variants might be more correlated among

reciprocal best-hit pairs than for best-hits; in fact both sets show very

similar correlations in variant positions.

Next we characterized all dbSNP reference polymorphisms [1]

mapped to these 17,111 genes, first determining if they mapped to

the gene’s annotated protein sequence(s) in GenBank. As many of

Author Summary

There exists a superabundance of human sequence
variations. Testing every sequence variant for association
with human disease is often infeasible, as studies must be
very large—and hence expensive—to overcome the
statistical penalties used to control for multiple tests. A
common alternative is to assay only a subset of sequence
variants for which there are prior reasons to believe they
may be disease-causing. Sequence variants that change
conserved amino acids, for example, are often disease-
causing. As an adjunct to this approach, we have explored
the potential of variants that occur at homologous
positions within paralogous human proteins as a means
of identifying disease-causing DNA sequence variations.
We find that DNA sequence variants co-occur at aligned
amino acid pairs more frequently than expected by
chance, suggesting that similar functional constraints on
paralogous proteins result in coordinated distributions of
variants along their lengths. Moreover, if one member of a
variant-pair is disease-causing, its partner is likely to be
disease-causing as well. These facts provide new avenues
for the identification of disease-causing sequence varia-
tions.

Figure 1. Using sequence homology to identify variant pairs. The protein encoded by a candidate disease gene (the subject in the alignment)
is aligned to a paralogous protein encoded by a locus with known disease-causing alleles (the query in the above alignment). Shown in red is a
paralogous variant pair. Variants in the candidate that occur in the same positions in the alignment as a known disease-causing variant in the other
protein are prioritized for use in subsequent association studies.
doi:10.1371/journal.pcbi.1000218.g001

Variant Locations are Correlated in Paralogs
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these gene-pairs encoded very similar protein sequences, we

restricted our analyses to dbSNP variants with a map weight of

class 2 in dbSNP—variants that can be uniquely mapped to a

single location with the genome (for details see ftp://ftp.ncbi.nih.

gov/snp/00readme.html). In total, this procedure gave us a set of

109,989 coding variants. We then analyzed each sequence

variant’s impact on the protein sequence (see Materials &

Methods). We first characterized each variant according to

whether it produced a synonymous (43,467), or non-synonymous

(66,522) change, further breaking the non-synonymous variants

into five sub-classes: conservative amino acid substitutions

(30,690), non-conservative substitutions (24,070), nonsense (stop

codon producing) variants (1,148), frameshift variants (9,895) and

in-frame indels (719).

We then aligned each paralogous gene pair’s protein sequences

using BLASTP [13,14], and used these alignments to identify

aligned variants (see Figure 1 for an overview of the algorithm). In

total we found 4743 aligned variants. The ODDs scores for non-

conservative, conservative, and synonymous pairs were 89.3, 62.1,

and 32.2 respectively. All were significant at P%161024 (Table 1).

The ODDs score for all non-synonymous pairs, conservative and

non-conservative substitutions combined, was 31.3 (P%161024).

Surprisingly, this was lower than the individual ODDS scores for

variants causing conservative and non-conservative amino acid

changes. We first sought to explain this phenomenon by asking if it

is due to the fact that some types of non-synonymous changes are

mutually excluded from occurring at the same position in a codon,

e.g. nonsense mutations cannot occur at the first and second

position of a methionine codon, but amino acid substitutions can.

To test this hypothesis, we regrouped the variant pairs by aligned

amino acid rather than the more stringent criterion of their having

the same position within the aligned codons. Interestingly this had

little effect on either the ODDs scores, or their relative magnitudes

to one another. Thus, it appears that the different subclasses of

non-synonymous variants have distinct distributions along the

aligned proteins.

We also observed a correlation between the degree of sequence

similarity and fraction of aligned variant-pairs. The Spearman

correlation coefficient [15] between the odds ratio (i.e. the ratio of

the observed to expected numbers aligned variant-pairs) and the

average number of bits per aligned position of two aligned

paralogous proteins was 0.47 (P,0.001) among the 17,111 best-hit

protein pairs. In other words, the more similar the to paralogous

proteins, thee more correlated the positions of their sequence

variants. Taken together these results suggest that similar functional

constraints together with similar positions of synonymous codons in

paralogous protein sequences combine to result in coordinated, class-

specific distributions of variants along their lengths.

Disease genes and their polymorphisms
Next we asked if paralogous polymorphisms can be used to

identify disease-causing variants. To do so we used a set of 2,244

curated human disease-genes (the ‘‘Omicia disease gene set’’),

which have been documented in the literature as playing a

causative role in one or more human diseases. This list of genes

includes and extends a human disease gene set previously

published by Jimenez-Sanchez [16] that contains 923 genes. The

complete list of genes and their variants is available at http://

www.yandell-lab.org/publications/variant_data.htm.

For these disease gene analyses we used a different set of

sequence variants—one consisting of 35,292 coding sequence

variants in 2,244 disease genes drawn largely from OMIM,

HGMD and dbSNP (see Materials & Methods for details). The

dataset contains:

A. 4,120 OMIM variants: 4,103 non-synonymous (incl. 1,359

conservative substitutions, 1,695 non-conservative substitu-

tions, 1,049 nonsense) and 17 synonymous variants.

B. 17,467 HGMD variants: 12,312 non-synonymous (incl. 4,338

conservative substitutions, 7,811 non-conservative substitu-

tions, and 163 nonsense variants) and 5,155 indel variants.

C. 13,858 dbSNP variants: 7,268 non-synonymous (incl. 4,063

conservative substitutions, 3,058 non-conservative substitu-

tions, 147 nonsense variants) and 6,590 synonymous

variants.

Interestingly, more than 25% of the OMIM alleles are

nonsense, meaning they result in a termination codon, while the

HGMD and dbSNP sets contain a very small percentage (,5%) of

nonsense alleles. OMIM deletion and insertion mutations were not

included due to ambiguities in the entry format. Database entries

that could not be mapped to the current annotated protein were

also excluded from the dataset (see Materials & Methods for

details).

As our disease gene set contained few genes whose proteins were

reciprocal best hits, we instead examined the frequency of aligned

variant pairs between each gene and its best hit (1448 gene pairs)

within the set of disease genes. We first calculated the global

correlation (using an odds ratio as above) in variation positions

among paralogs for the 2,244 Omicia disease genes, using the

28,691 non-synonymous and 6,607 synonymous variants located

within these genes. The results of this analysis are shown in

Table 2. If we align polymorphisms from dbSNP against

polymorphisms from dbSNP, the odds ratio for paralogous mis-

sense pairs (pooled non-conservative and conservative substitution

pairs; see Table 2) is 9.5 (P%161024). This means that, among

Omicia disease genes, non-conservative and conservative poly-

morphisms from dbSNP co-occur as paralogous pairs 9.5 times

more frequently than expected by chance. The value was 6.1 for

synonymous variants. If we only consider disease-causing variants

aligned to other disease-causing variants, the ratio is 8.8

(P%161024). The tendency of dbSNP mis-sense variants to pair

with known disease-causing variants is less: the ODDs ratio is 2.2

(P%161024).

Table 1. ODDs scores associated with different types of variant pairs.

Dataset Genes % Similarity Syn. Non-syn. Non-con. Con. Frame-shift

Reciprocal Best-hits 7,368 74.5 33.7 31.7 95.3 64.3 200.4

Best hits 17,111 69.1 32.2 31.3 89.3 62.1 218.2

Genes: number of genes in the dataset. % Similarity: average value for the dataset’s aligned proteins. Syn: synonymous variants. Non-syn: non-synonymous variants
(pooled variants from the other classes of variant, including nonsense variants). Non-con: non-conservative substitutions. Con: conservative substitutions. Frame-shift:
frameshift inducing indels. Values in the table are ODDs scores (observed number of variant pairs/expected number of variant pairs).
doi:10.1371/journal.pcbi.1000218.t001

Variant Locations are Correlated in Paralogs
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As was the case for best-hit paralogous protein pairs, we found

that for known disease associated genes the sequence similarity of

the two aligned proteins is also positively correlated with the

number of their aligned variants (Spearman correlation coefficient

R = 0.32 for the reciprocal best pairs, R = 0.47 for best-hits

P,0.001). In summary, these results show that even though the

proteins encoded by the disease gene pairs were on average less

similar to one another than the reciprocal best hits used in our

genome-wide investigations above (58.5% vs. 74.2% respectively),

the same correlations still exist as to where sequence variants

occurred along the lengths of their proteins. Moreover sequence

variants known to be associated with human disease tend to align

with one another more frequently than phenotypically unchar-

acterized polymorphisms from dbSNP.

Disease-causing variant pairs preferentially align with
one another

Next we determined whether or not disease-causing alleles tend

to pair with one another more often than expected by chance. In

other words, if one member of an aligned variation pair is disease-

causing, is its partner likely to be disease-causing as well? In order

to test this hypothesis we first chose a random set of 7000 known,

disease-causing variations from among the 15,203 non-conserva-

tive and conservative (mis-sense) variants derived from HGMD

and OMIM in the Omicia disease gene set; we called this Set A.

We also randomly chose 7,000 of non-conservative and conser-

vative substitution variants from among the 7,268 dbSNP non-

synonymous variations located in these same genes; we called this

Set B. We then assayed how often alleles in Set A and Set B were

found paired with the remaining 8,203, known HGMD and

OMIM disease-causing, conservative and non-conservative sub-

stitution variants not included in either Set A or Set B; these were

our control set, Set C. Overall we observed an 86% enrichment

(6.6-fold60.11; P%161024) of OMIM and HGMD alleles from

Set A paired with disease-causing OMIM and HGMD alleles in

Set C, compared to dbSNP variants from Set B paired with

OMIM and HGMD alleles in Set C. Thus, known disease-causing

alleles tend to preferentially align with one another. This finding

demonstrates that on average, choosing uncharacterized variations

aligned to known disease variants will enrich 6.6-fold for clinically

significant variations.

We repeated the experiment using only non-conservative

variants, and once again using only conservative ones. The same

trends were observed. The enrichment for Set A–C pairs was 14-

fold60.19 (P,0.0001) for conservative variants, and even greater

for non-conservative variants (19-fold60.19; P,0.0001). Thus

pooling non-conservative and conservative polymorphisms lowers

the relative enrichment for disease-causing pairs, a result

consistent with our earlier genome-wide paralog analyses. In

summary, these results demonstrate that disease-causing variants

tend to associate with one another to the exclusion of non-disease-

causing variants—implying that novel variants in gene A aligned

with known disease-causing variants in gene B (Figure 1) are on

average more likely to be disease-causing than are novel

polymorphisms occurring elsewhere in gene A.

Discussion

We have performed the first analysis of the distribution of DNA

sequence variants within the protein coding portions of paralogous

genes. Our data show that (1) protein sequence variants, both

synonymous and non-synonymous, tend to occur with high

frequency at homologous positions within paralogous proteins;

(2) that different subclasses of variants have distinct distributions

along the aligned proteins; and (3) that disease-causing variants

also tend to pair with one another. Overall, the magnitude of the

correlation in variant positions is correlated with the sequence

similarity of the two proteins. These facts suggest that similar

patterns of codon usage and functional constraints combine to

produce correlations in the locations of variants along the lengths

of paralogous proteins. This coordination includes not only

common (MAF.2%), synonymous variants, without phenotypic

consequences, but also extends to rare, disease-causing alleles.

We also discovered that different subclasses of variant have

distinct distributions along the lengths of paralogous proteins. Two

facts support this conclusion. First, we observed differing

tendencies of variant sub-classes to pair with one another

(Table 1). Among best-hit paralogous proteins, the ODDs scores

for synonymous, non-synonymous, conservative, and non-conser-

vative variants are 32.2, 31.3, 62.1 and 89.3 respectively. Second,

combining classes always depresses the ODDs score. Thus it

appears that each subclass of variant occurs in a specific pattern

along the lengths of paralogous proteins, with non-conservative

variants having the most highly correlated distribution. One

possible explanation of the different distributions is that purifying

selection acts to restrict non-synonymous substitutions to a subset

of positions in the two proteins, while synonymous variants are free

to occur at a greater number of positions; hence the lower ODDS

score for synonymous pairs.

Disease-causing variants also tend to align with one another.

Moreover, they do so to the exclusion of phenotypically

uncharacterized variants in dbSNP. Overall, disease-causing

variants are 6.6-fold (P,161024) more likely to pair with one

another than with non-synonymous dbSNP variants. When

disease-causing variants producing conservative and non-conser-

vative amino acid changes are considered separately, the

enrichment is even more pronounced: 14- and 19-fold, respec-

tively. As the dbSNP database presumably contains some

undiscovered disease-causing variants, these odds ratios are likely

lower bounds; thus the trend is quite robust. Though speculative,

one possible explanation of these facts is that similar functional

constraints in paralogous proteins restrict rare, disease-causing

variants to a few homologous positions where particular amino

acid substitutions produce the disease phenotype. In any case, like

other classes of variant, rare, disease-causing variants in para-

logous proteins also tend to pair.

Alignments of paralogous proteins and their variations provide a

novel resource for functional genomics. Consider that aligned

variation pairs can be divided into three basic classes depending on

whether their members are known to be disease-causing or not;

Figure 2 provides a summary of this classification system. Each

class 1 pair, for example, relates a pair of known diseases, both

Table 2. ODDs ratios for disease-gene variant pairs.

DATABASE MIS-SENSE SYNONYMOUS

dbSNP vs. dbSNP 9.5 6.1

all disease vs. all disease 8.8 N/A

all disease vs. dbSNP 2.2 N/A

Column 1 lists the database of origin for each member of the variant pair. ‘‘all
disease’’ means known disease-causing variants from OMIM and HGMD.
Columns 2 and 3 give the odds ratios (observed/expected) for screening every
gene from the Omicia disease gene set for paired variants using pooled non-
conservative and conservative substitutions (here termed ‘MIS-SENSE’) and
synonymous variants from the respective databases. P%1e24 for all values.
doi:10.1371/journal.pcbi.1000218.t002

Variant Locations are Correlated in Paralogs
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caused by mutations at equivalent positions in two paralogous

proteins. Table 3 shows a sample set of class 1 pairs. Similar

changes in similar proteins suggest similar biochemical etiologies,

and in some cases overlapping disease phenotypes. Patients with

Menkes and Wilson disease, for example, both suffer from

abnormalities in copper metabolism [17–19]. Likewise Alagille

and Marfan syndrome Type I are both associated with spinal,

vision, and circulatory abnormalities [20–25]. These facts

demonstrate how variant pairs can be used as starting points in

the search for latent knowledge in disease literature and databases.

In other words, therapies and drugs used to treat disease symptoms

caused by mutations in one member of a pair might prove

efficacious in treating the other disease as well. No doubt, a myriad

of issues including time and place of gene expression will

complicate such simple conclusions. Nonetheless, these data show

how paralogous disease genes and their variant-pairs can be used

for hypothesis generation and as points of departure for further

clinical research. Similarly, extending this procedure to include

paralogs of known disease genes, that are not themselves yet

associated with any disease could be used to identify new disease

gene candidates, and to identify uncharacterized variants within

them likely to have phenotypic consequences.

Another use for variant-pairs is in variation prioritization for

association studies and clinical validation studies. Current AAS

methodologies [4] such as SIFT [5] and PolyPhen [8] look for

those sequence changes likely to disrupt conserved regions.

Obviously, many disease alleles do result in violent changes to

conserved portions of proteins—frameshift, and nonsense muta-

tions for example. Nevertheless, some alleles are more subtle: For

some proteins, conservative changes in poorly conserved regions

may be the only tolerated changes; in other cases, even non-

conservative changes that destroy protein function may not be

disease-causing, especially for non-essential, redundant genes.

These considerations suggest that a hybrid approach to variant

prioritization might prove effective, one that used conservation

together with information about the locations of uncharacterized

variants relative to other disease-causing alleles, e.g. Class 2

variants in Figure 2. Our analyses suggest that such an approach

might improve the performance of AAS approaches, especially for

genes with a closely related paralog known to be a human disease

gene.

Our results naturally raise questions as to the origins of variant

pairs. One possibility is ‘‘common descent’’, but this seems

unlikely. Widely accepted models for gene duplication [26–28]

generally assume that paralogous genes arise from one or a few

ancestral duplication events, which are later fixed in the

population as a result of positive selection. No matter how

numerous the variations at each position in the progenitor protein,

a duplication event will fix a single variant at each position in the

new paralog. Thus, it seems more likely that variants in the

duplicated gene will have arisen after the duplication event,

especially for more ancient duplications—and that the correspon-

dence in their locations is a product of similar selective pressures

acting on both paralogs.

Another potential explanation for the trends we have observed

is gene conversion [26,29,30], which may provide another source

of coordinated variation among highly conserved paralogous

genes. Repeated recombination between the new duplicate and its

ancestor within a population might furnish the newer gene with

many of the same variants as its parent. Novel variants in the

duplicate might also be passed to its ancestor as well. In principle,

disequilibrium and/or similar variant frequency spectra at aligned

amino acids might be used to distinguish this model from the one

proposed above, with disequilibrium and similar variant frequency

spectra construed as supporting the gene conversion model.

However, such analyses lie outside the scope of the present paper.

Whatever the ultimate cause of the phenomenon, our results

clearly demonstrate that variations tend to occur at equivalent

positions in paralogous proteins. This fact provides new avenues

for DNA variant prioritization and for clinical studies.

Materials and Methods

Datasets
The DNA variants used in this study were obtained as follows.

For the ‘‘Genome-wide analyses of dbSNP polymorphisms’’,

variant data was retrieved from NCBI’s dbSNP FTP site and

stored in a MySQL database as described below. All fields from

the chromosome reports (ftp://ftp.ncbi.nih.gov/snp/organisms/

human_9606/chr_rpts) for chromosomes 1–22, X and Y were

Figure 2. Classification system for variant pairs.
doi:10.1371/journal.pcbi.1000218.g002

Table 3. Selected Class 1 SNP pairs.

Gene A ID of SNP in Gene A Disease assoc. with Gene A Gene B ID of SNP in Gene B Disease assoc. with Gene B

FGFR2 HGMD:CX972741 Pfeiffer syndrome FGFR3 HGMD:CM950470 Thanatophoric dysplasia

JAG1 HGMD:CD993777 Alagille syndrome FBN1 HGMD:CM972811 Marfan syndrome

ATP7A HGMD:CM940140 Menkes syndrome ATP7B HGMD:CM970138 Wilson disease

ABCA1 HGMD:CM993803 Tangier disease ABCA4 HGMD:CM990025 Stargardt disease

CFTR HGMD:CM940275 Cystic fibrosis ABCC8 HGMD:CM981883 Hyperinsulinism

Columns 1 & 4 give the gene symbols for two paralogous disease-causing genes. Columns 2 & 5 give the IDs of the two variants that comprise the Class 1 pair. Columns
3 & 6 list the diseases most commonly associated with the two paralogous variants.
doi:10.1371/journal.pcbi.1000218.t003

Variant Locations are Correlated in Paralogs
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loaded into a database table. Fasta files of the sequence variants

were downloaded from ftp://ftp.ncbi.nih.gov/snp/organisms/

human_9606/rs_fasta. Each variant’s ID and allele were parsed

from the fasta header and loaded to a table in the database. Flatfile

dumps of the ANS1 formatted dbSNP data were retrieved (ftp://

ftp.ncbi.nih.gov/snp/organisms/human_9606/ASN1_flat) and

parsed for contig accession and version, variant coordinates,

location type and orientation. These fields were also loaded into a

database table. Finally, a computational biology software library

for genome annotations called CGL [31] (www.yandell-lab.org/

cgl) was used to extract contig based gene coordinates for each

human gene from NCBI’s release 36.2 of the human genome

annotation (ftp://ftp.ncbi.nih.gov/genomes/H_sapiens) and this

data was loaded into the database. Structured Query Language

(SQL) was used to query the database for every variant that was

contained within the boundary of each gene’s coordinates and a

report was generated for each gene’s variants containing their

contig ID, gene symbol, RefSNP ID [1], location of variant on the

contig, map weight of the variant, allele, location type, and

orientation.

The variants used in the disease gene analyses were obtained

from 3 sources: OMIM [11], HGMD [12] and dbSNP [1]. In

each case we used a set of 2244 human disease genes based upon a

list published in Jimenez-Sanchez et al [16]. This list of 923 genes

was extended to include every gene from OMIM or HGMD with

at least one sequence variant having a peer-reviewed publication

showing its involvement in or association with a human disease.

OMIM alleles in these genes were selected as follows. Disease-

causing alleles and sequence variants implicated in disease

predisposition were parsed from OMIM XML documents.

Unfortunately, the positions of these variants on the currently

annotated protein sequence are often unknown, as OMIM indexes

its coding variants according to the amino acid they alter on the

protein sequence reported in the publication, rather than the

currently annotated protein sequence. The currently annotated

protein often differs from these sequences. In order to circumvent

this issue, we developed a mapping process to move the OMIM

alleles forward to the current annotations. It works as follows.

OMIM alleles are documented by the change they cause, e.g.

H35K would refer to a variant that changes a histidine located at

position 35 to a lysine. Usually we were able to obtain this

information for several variants at various positions along the

protein. We then asked if there was a single offset that would map

each variant to the currently annotated protein. Consider two

variants annotated as H35K and W87S. Although the currently

annotated protein might not contain either of these amino acids at

the these positions, in many cases adding or subtracting a constant

value from both of the OMIM locations will be bring them into

register with the currently annotated protein sequence. Assuming n

alleles are available, the probability that this would occur by

chance would be around (1/20)n, neglecting amino acid frequency

biases. To control for this factor we automatically identified low

complexity proteins and manually reviewed each placement on

these proteins. In total we were able to map more than 80% of

OMIM alleles by this procedure. HGMD [12] allele information

was obtained from HGMD as XML documents. These were post-

processed, and checked for agreement with the current GenBank

annotations. Variants from dbSNP were chosen on the basis of

their frequencies (MAF.2%). A publication on the details of this

algorithm is in preparation.

Classification of variants
Once our variant selection process was complete, we then

classified each coding variant, using a CGL-based script [31], into

one of 6 categories on the basis of the change to the protein:

synonymous, conservative substitution, non-conservative substitu-

tion, nonsense, frameshift, and in-frame insertion or deletion.

Designation as conservative versus non-conservative was based

upon the BLOSUM 62 matrix [32]; changes with a score$0 were

considered conservative, those less than 0, non-conservative.

BLAST searches
All blast searches were carried out using WU-BLASTP (http://

blast.wustl.edu) with the following command line: blastp db query

–B = 1000 –E = 0.0001 –Z = 300000. Hits were parsed at E,1e26.

Conversion of GenBank annotations
GenBank annotations (version 36.2) were downloaded from

ftp.ncbi.nlm.nih.gov/genomes. These were converted from Gen-

Bank format to BioChaos XML documents using the Bio-Chaos

software library (http://www.fruitfly.org/chaos-xml). The result-

ing XML documents were used as inputs, together with the variant

data described above, to a CGL-based pipeline. Variant locations

were first classified as coding or non-coding, and then further

classified according to the type of change to the annotated protein

sequence. Variants were related to one another using BLASTP

protein alignments and CGL was used to map the variants onto

the protein alignments, and onward to their implied aligned

codons. This allowed us to keep track of both the amino acid and

the corresponding underlying nucleotides. Thus we were able to

ascertain when variants mapped to same amino acid and when

they mapped to the equivalent position within the codon as well.

ODD scores and significance calculations
We followed an established procedure to calculate odds scores

for aligned amino acids [32] and simply adapted it to aligned

variants. The expected frequency of variant-pairs was obtained by

tallying the number of variants contained in the aligned portions of

each query protein, and dividing that value by the total length of

the BLASTP alignments. The same calculation was also carried

out for each subject protein sequence. The product of these two

frequencies gives the expected frequency of variant pairs. Next, the

number of aligned variant pairs (the observed) were tallied and

then divided by the total length of the BLASTP alignments, to give

the observed frequency of aligned variants. The reported ODDs

scores are the ratios of the observed and expected frequencies.

This simple model for the expectation provides a means to

measure the tendency for variants to pair, and to quantify the

magnitude of the trend in order to estimate its utility for

prioritization and data mining purposes. Although it might be

possible to formulate an expectation model that takes into account

the relative contributions of the genetic code and purifying

selection, this would not provide a means to measure the tendency

of variants in paralogous proteins to pair—our goal. To see why,

consider that under an expectation model that correctly accounted

for the relative contributions of codon-substitution patterns and

purifying selection, we would expect an odds score of 1.0, i.e. the

observed frequency would equal the expectation.

The Statistical significance of the ODDs scores was estimated by

simulation. The frequencies of variant pairs used in the

expectation calculation were used to produce two strings of 0 s

and 1 s equal to one-tenth the length of total length of the

BLASTP alignments, wherein a 1 represented the occurrence of a

variant. Perl’s rand function and the frequencies of variant pairs in

the BLASTP alignments were used to produce these strings. 1 s

appearing in both strings at the same offset were scored as aligned.

This simulation was repeated 10,000 times; if none of the

simulations had an ODDs score equal to or greater than the
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reported value, then the reported value was considered significant

at P,161024. In practice the simulated ODDs scores never

climbed above 1; a rather obvious fact, as given the length of the

strings involved (L,16106), the variance from the expected value

is very small. Because we used a length 1/10 the actual in our

simulations (in order to speed the calculation), the actual P value is

likely much less than 161024. This approach was also adapted to

estimate the statistical significance of the enrichments seen in our

disease-gene analyses. Spearman correlation coefficients [15] were

calculated using the Statistics-Rank-Correlation module from

CPAN.org (www.cpan.org). Their Statistical significance was

calculated by randomizing the data some number of times (usually

1000) and then asking if any correlation of the same magnitude

ever appeared by chance.
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