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Phevor Combines Multiple Biomedical Ontologies
for Accurate Identification of Disease-Causing Alleles
in Single Individuals and Small Nuclear Families

Marc V. Singleton,1 Stephen L. Guthery,5 Karl V. Voelkerding,3,4 Karin Chen,6 Brett Kennedy,1

Rebecca L. Margraf,4 Jacob Durtschi,4 Karen Eilbeck,2,7 Martin G. Reese,8 Lynn B. Jorde,1,2

Chad D. Huff,9 and Mark Yandell1,2,*

Phevor integrates phenotype, gene function, and disease information with personal genomic data for improved power to identify

disease-causing alleles. Phevor works by combining knowledge resident in multiple biomedical ontologies with the outputs of

variant-prioritization tools. It does so by using an algorithm that propagates information across and between ontologies. This process

enables Phevor to accurately reprioritize potentially damaging alleles identified by variant-prioritization tools in light of gene function,

disease, and phenotype knowledge. Phevor is especially useful for single-exome and family-trio-based diagnostic analyses, the most

commonly occurring clinical scenarios and ones for which existing personal genome diagnostic tools are most inaccurate and under-

powered. Here, we present a series of benchmark analyses illustrating Phevor’s performance characteristics. Also presented are three

recent Utah Genome Project case studies in which Phevor was used to identify disease-causing alleles. Collectively, these results show

that Phevor improves diagnostic accuracy not only for individuals presenting with established disease phenotypes but also for those

with previously undescribed and atypical disease presentations. Importantly, Phevor is not limited to known diseases or known

disease-causing alleles. As we demonstrate, Phevor can also use latent information in ontologies to discover genes and disease-causing

alleles not previously associated with disease.
Introduction

Personal genome sequencing is dramatically changing

the landscape of clinical genetics, but it also presents a

host of challenges. Every sequenced exome presents the

clinical geneticist with thousands of variants, any one of

which might be responsible for the person’s illness. One

approach to making sense of these data is to employ a

whole-genome and whole-exome search tool such as

ANNOVAR1 or the Variant Annotation, Analysis, Search

Tool (VAAST)2,3 to identify disease-causing variants in an

ab initio fashion. This is proving an effective approach

for case-cohort analyses;4–8 likewise, sequencing addi-

tional family members can also improve diagnostic accu-

racy. Unfortunately, single affected individuals and small

nuclear families are the most frequently encountered

diagnostic scenarios in the clinic. Today’s whole-genome

and whole-exome search and variant-prioritization tools

are underpowered in these situations, limiting the

number of successful diagnoses.2,9 In response, physicians

and clinical genetics laboratories often attempt to narrow

the list to a subset of candidate genes and alleles in light

of an individual’s phenotype.10

Phenotype data are generally employed in an ad hoc

fashion in which clinicians and geneticists choose genes
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and alleles as candidates on the basis of their expert

knowledge. No general standards, procedures, or validated

best practices yet exist. Moreover, genes not previously

associated with the phenotype are not considered—often

preventing the discovery of gene-disease associations.

The potential impact of false positives and negatives on

diagnostic accuracy is obviously considerable. Algorithmic

means of prioritizing genes and variants in light of pheno-

type data are thus badly needed. In response, we have

created Phevor, the Phenotype Driven Variant Ontological

Re-ranking tool.

Phevor works by combining the outputs of widely used

variant-prioritization tools with knowledge resident in

diverse biomedical ontologies, such as the Human Pheno-

type Ontology (HPO),11 the Mammalian Phenotype

Ontology (MPO),12 the Disease Ontology (DO),13 and the

Gene Ontology (GO)14 (Figure S1, available online). Ontol-

ogies are graphical representations of the knowledge, such

as gene functions or human phenotypes, in a given

domain. Ontologies organize this knowledge by using

directed acyclic graphs wherein concepts (terms) are nodes

in the graph and the logical relationships obtained

between them are modeled as edges, for example, ‘‘deami-

nase activity’’ (node) is_a (edge) ‘‘catalytic activity’’

(node).14 Ontology terms (nodes) are used to ‘‘annotate’’
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biological data, rendering the data machine readable and

traversable via the ontologies’ relationships (edges). For

example, annotating a gene with the term ‘‘deaminase

activity’’ makes it possible to deduce that the same gene

encodes a protein with ‘‘catalytic activity.’’ In recent years,

many biomedical ontologies have been created for the

management of biological data.15–17

Phevor propagates an individual’s phenotype informa-

tion across and between biomedical ontologies. This pro-

cess enables Phevor to accurately reprioritize candidates

identified by variant-prioritization tools in light of knowl-

edge contained in the ontologies. As we show, Phevor

can also discover emergent gene properties and latent

phenotype information by combining ontologies, further

improving its accuracy.

Phevor does not replace existing prioritization tools;

rather, it provides a general means of improving every

tool’s performance. As we demonstrate, Phevor substan-

tially improves the accuracy of widely used variant-priori-

tization tools such as SIFT,18 conservation-based tools

such as PhastCons,19 and genome-wide search tools such

as VAAST2,3 and ANNOVAR.1 Phevor also outperforms

tools such as PHIVE (Phenotypic Interpretation of Variants

in Exomes),20 which combines a fixed-variant filtering

approach with mouse phenotype data.

Phevor also differs from tools such as Phenomizer21 and

sSAGA (Symptom- and Sign-Assisted Genome Analysis)10

in that it does not postulate a set of fixed associations

between genes, phenotypes, and diseases. Rather, Phevor

dynamically integrates knowledge resident in multiple

biomedical ontologies into the variant-prioritization pro-

cess. This enables Phevor to improve diagnostic accuracy

not only for established disease phenotypes but also for

previously undescribed and atypical disease presentations.

Importantly, Phevor also provides ameans of integrating

ontologies that contain knowledge not explicitly linked to

phenotype (such as the GO) into the variant-prioritization

process. As we demonstrate, Phevor can use information

latent in such ontologies to discover disease-causing alleles

in genes not previously associated with disease.

Phevor is especially useful for single-exome and family-

trio-based diagnostic analyses, the most commonly

occurring clinical scenarios and ones for which existing

sequenced-based diagnostic tools are most inaccurate and

underpowered. Here, we describe the algorithm under-

lying Phevor and present benchmark analyses illustrating

Phevor’s performance characteristics.We also present three

Utah Genome Project clinical applications in which Phe-

vor was used to identify both known disease-causing alleles

and ones not previously associated with disease.
Material and Methods

Phenotype and Candidate-Gene Information
Phevor can improve diagnostic accuracy by using phenotype and

candidate-gene information derived from multiple sources. In the
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simplest scenario, users provide a tab-delimited list of terms

describing the phenotype(s) drawn from the HPO.11 Alternatively,

the list can consist of terms from the DO,13 MPO,12 GO,14 or

Online Mendelian Inheritance in Man (OMIM). Lists containing

terms from more than one ontology are also permitted. Users

may also employ the online tool Phenomizer21 to describe an

individual’s phenotype and to assemble a list of candidate genes.

Phenomizer provides the physician with a means of producing a

phenotype description for use with Phevor. The Phenomizer

report can be downloaded to the user’s computer and passed

directly to Phevor. See Figure S1 for more information.
Assembling a Gene List
Biomedical-ontology annotations are now readily available for

many human and model-organism genes. Probably the best-

known example is the GO. Currently, over 18,000 human genes

have been annotated with GO terms.14 In addition, at last count,

over 2,800 human genes have been annotated with HPO terms.11

Phevor employs these annotations to associate ontology concepts

(nodes) to genes and vice versa. Consider the following example of

a phenotype description consisting of two HPO terms: ‘‘hypo-

thyroidism’’ (HP:0000812) and ‘‘abnormality of the intestine’’

(HP:0002242). If genes have previously been annotated to these

two nodes in the ontology, Phevor saves those genes in an internal

list. In cases where no genes are annotated to a user-provided

ontology term, Phevor traverses that ontology by beginning at

the provided term and proceeding toward the ontology’s root(s)

until it encounters a node with annotated genes, and then it

adds those genes to the list. At the end of this process, the resulting

gene list is then used for seeding nodes in the other ontologies,

e.g., the GO, MPO, and DO.

Phevor relates different ontologies via their common gene

annotations (Figure S2). Deleterious alleles in ABCB11, for

example, are known to cause intrahepatic cholestasis, a fact

captured by HPO’s annotation of ABCB11 to the node ‘‘intrahe-

patic cholestasis’’ (HP:0001406). In the GO, ABCB11 is annotated

to ‘‘canalicular bile acid transport’’ (GO:0015722) and ‘‘bile acid

biosynthetic process’’ (GO:0006699). Phevor uses the common

gene (in this case, ABCB11) to relate the HPO node HP:0001406

to GO nodes GO:0015722 and GO:0006699. As we explain below,

this process allows Phevor to extend its search to include addi-

tional genes with functions similar to those of ABCB11.
Ontology Propagation
Once Phevor identifies a set of starting nodes for each ontology,

i.e., those provided by the user in their phenotype list (e.g.,

HP:0001406) or those derived from it by the cross-ontology

linking procedure described in the preceding paragraph (e.g.,

GO:0015722 and GO:0006699), it next propagates this informa-

tion across each ontology by means of a process we term ontolog-

ical propagation. Consider the example shown in Figure S3. Here,

two seed nodes in some ontology have been identified, and in

both cases gene A has been previously annotated to both nodes.

Each seed node is assigned a value of 1, and this information is

then propagated across the ontology as follows. If we proceed

from each seed node toward its children, each time an edge is

crossed to a neighboring node, the current value of the previous

node is divided by 2. For example, if the starting seed node has

two children, its value is divided in half for each child, so in this

case, both children receive a value of 1/2 . This process is continued

until a terminal leaf is encountered. The original seed scores are
014



also propagated upward to the root node(s) of the ontology by

means of the same procedure (Figure S3B). In practice, there can

be many seed nodes. In such cases, intersecting threads of propa-

gation are first added together, and the process of propagation

then proceeds as previously described. One interesting conse-

quence of this process is that nodes far from the original seeds

can attain high values, greater even than those of any of the start-

ing seed nodes. The phenomenon is illustrated by the darker red

nodes in Figure S3C, in which propagation has identified two addi-

tional gene candidates, B and C, not associated with the original

seed nodes.

From Node to Gene
Upon completion of propagation (Figure S3C), Phevor renormal-

izes each node’s value to between 0 and 1 by dividing it by the

sum of all node scores in the ontology. Phevor next assigns each

gene annotated to the ontology a score corresponding to the

maximum score of any node in the ontology to which it is

annotated. This process is repeated for each ontology; thus, genes

annotated to more than one ontology will have a score from each.

These scores are added to produce a final sum score for each gene

and renormalized again to a value between 0 and 1. Consider a set

of genes drawn from the HPO and assigned gene scores by the pro-

cess described in the preceding paragraphs. Consider also a similar

list of human genes derived from propagation across the GO. Sim-

ply summing each gene’s HPO and GO scores and renormalizing

again by the total sum of sums will combine these lists.

Rational Expansion of Candidate-Gene Lists
The ontological propagation and combination procedures

described above enable Phevor to extend the original HPO-derived

gene list into an expanded candidate-gene list that can also

include genes not annotated to the HPO. Recall that during

propagation across an ontology, intersecting threads can cause

nodes to have scores that equal or even exceed those of any orig-

inal seed nodes. Thus, a gene not yet associated with a particular

human disease can become an excellent candidate if it is anno-

tated to an HPO node located at an intersection of phenotypes

associated with other diseases or has GO functions, locations,

and/or processes similar to those of known disease-genes anno-

tated to HPO. Phevor also employs the MPO, allowing it to

leverage model-organism phenotype information, and the DO,

which provides it with additional information pertaining

to human genetic disease. Thus, Phevor’s approach provides

an automatic and rational means of expanding a candidate-

gene list derived from a starting list of phenotype or gene-

function terms to leverage knowledge contained in diverse

biomedical ontologies. In the paragraphs below, we explain how

gene sum scores are combined with the outputs of variant-priori-

tization tools for improving the accuracy of sequence-based

diagnosis.

Combining Ontologies and Variant Data
Upon completion of all ontology propagation, combination, and

gene-scoring steps described in the preceding paragraphs, genes

are ranked by their gene sum scores; then, their percentile ranks

are combined with variant and gene-prioritization scores as

follows. Phevor first calculates a disease association score for

each gene,

Dg ¼
�
1� Vg

�
3Ng ; (Equation 1)
The Am
whereNg is the percentile rank of the renormalized gene sum score

as derived from the ontological combination and propagation

procedures described in Figures S2 and S3 and Vg is the gene’s

percentile rank provided by the external variant-prioritization or

search tool, e.g., ANNOVAR, SIFT, or PhastCons (except for VAAST,

in which case its reported p values are used directly). Phevor then

calculates Hg , a second score summarizing the weight of evidence

that the gene is not involved with the individual’s illness, i.e.,

neither the variants nor the gene is involved in the individual’s

disease:

Hg ¼ Vg 3
�
1�Ng

�
: (Equation 2)

The Phevor score (Equation 3) is the log10 ratio of the disease asso-

ciation score ðDgÞ and the healthy association score ðHgÞ,

Sg ¼ log10Dg

�
Hg : (Equation 3)

These scores are distributed normally (data not shown). The per-

formance benchmarks presented in the Results provide an objec-

tive basis for evaluating the utility of Sg .

Sequencing Procedures
To sequence exome DNA, we used the Agilent SureSelect(XT)

Human All Exon V5þUTRs targeted enrichment system. The

whole genome of the STAT1 proband was sequenced (see Results

for details). An Illumina HiSeq instrument programmed to

perform 101-cycle paired-end sequencing was used for all cases.

Sanger Sequence Validation
Putative disease-causing mutations identified by exome seq-

uencing were validated by Sanger sequencing in the DNA Seq-

uencing Core Facility at the University of Utah. We also used

DNA from probands and parents to validate inheritance patterns

or confirm de novo mutations in all of the cases presented. PCR

primers were designed and optimized and subsequently amplified.

Sequencing was performed via capillary sequencing.

Variant-Calling Procedures
According to the best practices described by the Broad Institute,23

sequence reads were aligned with the Burrows-Wheeler Aligner,

PCR duplicates were removed, and indel realignment was per-

formed with the Genome Analysis Toolkit (GATK). Variants were

joint called with the GATK UnifiedGenotyper in conjunction

with 30 CEU (Utah residents with ancestry from northern and

western Europe from the CEPH collection) Genome BAM files

from the 1000 Genomes Project.24 For the benchmarking experi-

ments, only single-nucleotide variants (SNVs) were used because

not every variant-prioritization tool can score indels and splice-

site variants. The case-study analyses searched SNVs, splice-site

variants, and indels.

Benchmarking Procedures
We inserted known, disease-causing alleles into otherwise healthy

(background) exomes. These exomes were sequenced to 503

coverage on an Illumina HiSeq (see sequencing procedures above)

and jointly called with 30 CEU genomes drawn from the 1000

Genomes Project.24 Known disease-associated genes were

randomly selected (without replacement) from the Human Gene

Mutation Database (HGMD). For each gene in the HGMD,

damaging SNV alleles were randomly selected (without replace-

ment) from all recorded damaging alleles at that locus. The
erican Journal of Human Genetics 94, 599–610, April 3, 2014 601
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damaging allele was added to the target exome(s) VCF file(s), and

the quality metrics of the closest mapped variant were attached to

it. Damaging alleles were inserted into the appropriate number of

healthy exomes depending on the inheritance model (e.g., two

copies of the same allele for recessive and one for dominant).

This process was repeated 100 times for 100 different, randomly

selected genes with established disease associations; the entire

process was then repeated 99 more times for determining margins

of error. All prioritization tools (SIFT, PhastCons, ANNOVAR, and

VAAST) were run with their default settings, except that dominant

or recessive inheritance was specified for the VAAST and

ANNOVAR runs because these two tools allow users to do so. For

purposes of comparison, for the VAAST and ANNOVAR runs, the

maximum minor allele frequency (MAF) cutoff was set to 1%,

ANNOVAR’s default setting. We also explored running ANNOVAR

with differentMAF cutoffs but found that overall performance was

best with this value. ANNOVAR was run with the ‘‘clinical variant

flag’’ option enabled so as not to exclude known disease-causing

variants present in dbSNP 135 from consideration. PHIVE20 was

run from the Exomiser program. For these runs, the MAF cutoff

was set to 1%, and the ‘‘remove dbSNP’’ and ‘‘pathogenic variant

flag’’ options were set to ‘‘no.’’
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Figure 1. Variant Prioritization for Known Disease-Causing
Alleles
Performance comparisons of four different variant-prioritization
tools before (A) and after (B) postprocessing them with Phevor.
Two copies of a known disease-causing allele were randomly
selected from HGMD and spiked into a single target exome at
the reported genomic location; hence, these results model simple,
recessive diseases. This process was repeated 100 times for 100
different, randomly selected already disease-associated genes for
determining margins of error. Bar charts show the percentage of
time for which the disease-associated gene was ranked among
the top ten candidates genome-wide (red) or among the top 100
candidates (blue); white denotes a rank greater than 100 in the
candidate list. For the Phevor analyses in (B), each tool’s output
files were fed to Phevor along with phenotype report containing
the HPO terms annotated to each disease-associated gene. The
table below the bar charts summarizes this information in more
detail. Bars do not reach 100% because of false negatives, i.e.,
not every tool is able to prioritize every disease-causing allele.
When the target gene’s disease-causing alleles were unscored or
predicted to be benign by a tool, the gene was placed at the
midpoint of the list of the 22,107 annotated human genes.
Results

Benchmark Analyses

Figure 1A summarizes the ability of four different variant

tools—SIFT, ANNOVAR, PhastCons, and VAAST— to use

a single affected individual’s exome to identify recessive

disease-causing alleles within a known disease-associated

gene. These four tools were selected so as to include two

prominent conservation-based variant-prioritization tools

(SIFT and PhastCons) and two prominent genome-wide

search tools (ANNOVAR and VAAST). SIFT18 is a tool for

amino acid conservation and functional prediction, Phast-

Cons19 is a tool for sequence-conservation identification,

ANNOVAR1 filters on variant frequencies to search

genomes for disease-casing alleles, and VAAST2,3 is a prob-

abilistic disease-associated-gene finder that uses informa-

tion on variant frequency and amino acid conservation.

To assemble these data, we inserted two copies of a known

disease-causing allele randomly selected from HGMD25

(see Material and Methods for details) into a single target

exome and repeated the process 100 times for 100 different

genes with known disease associations in order to deter-

mine margins of error. For these analyses, we used only

SNVs, excluding indels and other types of variants because

not every variant-prioritization tool can score them.

The heights of the bars in Figure 1A summarize the per-

centage of the 100 trials in which the prioritization tool

scored the known disease-causing allele. Importantly, the

percentages in Figure 1A include all scored alleles whether

or not they were scored as deleterious. For example, SIFT
602 The American Journal of Human Genetics 94, 599–610, April 3, 2
scored 46% of the known disease-causing variants as either

deleterious or tolerated. It was unable to score the remain-

ing 54% of the alleles. ANNOVAR scored 95% of the alleles,

and VAAST and PhastCons scored every allele. These per-

centages vary because not every tool is capable of scoring
014
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Figure 2. Variant Prioritization for Genes Previously Unassoci-
ated with Disease
The procedure used in Figure 1B was repeated, but instead the
disease-associated gene’s ontological annotations were removed
from all but the specified ontologies prior to running Phevor. For
economic reasons, only VAAST results are shown. Removing all
the disease-associated gene’s annotations from all ontologies
mimics the case of a previously unreported allele in a gene with
unknown GO function, process, and cellular location and no
previous association with a known disease or phenotype. This is
equivalent to running VAAST alone (‘‘none’’), and the leftmost
bar chart and table column summarize these results. The right-
hand bar and table column (‘‘All’’) summarize the results of
running VAAST and Phevor with the current ontological annota-
tions of the disease-associated gene. The ‘‘GO only’’ column
reports the results of removing the disease-associated gene’s
phenotype annotations, depicting discovery success with only
GO ontological annotations. This column models the ability of
Phevor to identify a disease association when that gene is anno-
tated to GO but has no disease, human, or model-organism
phenotype annotations. In contrast The ‘‘MPO, HPO, and DO’’
column assays the impact of removing a gene’s GO annotations
but leaving its disease, human, and model-organism phenotype
annotations intact.
every potential disease-causing variant. The reasons vary

from tool to tool and case to case. SIFT, for example, cannot

score alleles located in poorly conserved coding regions of

genes.26

The colors of the bars in Figure 1A summarize the per-

centage of time the gene with the inserted disease-causing

alleles was ranked among the top ten candidates genome-

wide (red) or among the top 100 candidates (blue); white

denotes a rank greater than 100 in the candidate list. The

table in Figure 1A summarizes this information in more

detail. ANNOVAR, for example, ranked 95% of the genes

spiked with known disease-causing alleles as potentially

damaged and judged the remainder of these genes as

containing only nondeleterious alleles. Of the 95% of

damaged genes it detected, on average it ranked all of

them within the top 100 candidates genome-wide. For

the 5% of genes that ANNOVAR failed to rank, we assigned

a rank of 11,141—the midpoint of the annotated 22,107

human genes. Hence, the average rank was much lower:

3,653. VAAST, by comparison, ranked every gene and iden-
The Am
tified the disease-causing allele among the top 100 candi-

dates 99% of the time and gave an average rank of 83

genome-wide. Note that in 100 runs of 100 different test

cases, no tool ever placed the gene containing the

disease-causing alleles among the top ten candidates.

Figure 1A thus illustrates a basic fact of personal genome

analysis: using only a single affected exome, today’s

tools are underpowered to identify the damaged gene

and its disease-causing variants.

Figure 1B summarizes the results of using Phevor to

reanalyze the same SIFT, ANNOVAR, PhastCons, and

VAAST output files in Figure 1A. For these analyses, each

tool’s output files were provided to Phevor along with a

phenotype report containing the HPO terms annotated

to every gene with inserted disease-causing alleles. These

phenotype descriptions are provided in Table S1. As can

be seen, Phevor dramatically improved the performance

of every tool benchmarked in Figure 1A. For the 95% of

genes ranked by ANNOVAR, all were among the top ten

candidates, and Phevor improved the average rank for

ANNOVAR from 3,653 to 552. Similar trends were seen

for SIFT. Phevor showed even better improvements for

PhastCons and VAAST outputs. The average rank for

VAAST, for example, improved from 83 to 1.8, and the

gene containing the disease-causing alleles was ranked

among the top ten genes100% of the time. Phevor per-

formed best on VAAST outputs because VAAST has a lower

false-negative rate than SIFT and ANNOVAR (Figure 1A).

This is because Phevor only improves the ranks of priori-

tized genes; it doesn’t rerank genes previously determined

by a tool to harbor no deleterious alleles.

Results for dominant disease are provided in Figure S4.

As would be expected, benchmarks for dominant diseases

showed the same trends in that every tool exhibited lower

power than for recessive cases. However, Phevor still

markedly improved power. Using VAAST outputs, Phevor

ranked the gene containing the disease-causing variant

in the top ten candidates 93% of the time.

Collectively, these results demonstrate that Phevor can

improve the power of widely used variant-prioritization

tools. Recall, however, that the HPO provides a list of

~2,800 known human genes, each annotated to one or

more HPO nodes, and that Phevor uses this information

during the ontology combination and propagation steps

described in Figures S2 and S3 (see Material and Methods).

In light of this fact, the question naturally arises as to how

much Phevor depends on the fact that the gene with the

disease-causing allele(s) has been previously annotated to

an ontology. Figure 2 addresses this issue.

Figure 2 employs the same procedure as in Figure 1, but

instead the disease-associated gene was removed from one

or more of the ontologies prior to running Phevor.

This made it possible to evaluate Phevor’s ability to

improve the ranks of a gene containing disease-causing

alleles in the absence of any ontological assignments

(i.e., as if the gene had never before been associated with

a disease, function, or phenotype). For these benchmarks,
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Figure 3. Comparison of Phevor to the Exomiser’s PHIVE
Comparison of disease-allele-identification success rates for Phe-
vor and the PHIVE methodology, which is available through the
Exomiser. The Exomiser is based upon ANNOVAR’s filtering logic;
thus, the Phevor comparison uses ANNOVAR as the variant-prior-
itization tool. Shown are the results of 100 searches of known
recessive disease-associated genes. Identical variant files and
phenotype descriptions were given to Exomiser þ PHIVE and
ANNOVAR þ Phevor. Bar charts show the percentage of time for
which the target, i.e., disease-associated, gene was ranked among
the top ten candidates genome-wide (red) or among the top 100
candidates (blue); white denotes a rank greater than 100 in the
candidate list. The table below the bar charts summarizes this
information in more detail. Bars do not reach 100% because of
false negatives, i.e., the tool reported the disease-causing allele to
be nondeleterious; these cases were placed at the midpoint of
the list of 22,107 annotated human genes.
we investigated not only the impact of simultaneously

masking the gene’s HPO, MPO, and DO phenotype anno-

tations but also its GO annotations. Because of space

limitations, the results of these experiments are only

shown for VAAST outputs (Figure 2).

As can be seen, removing the gene from one or more

ontologies did decrease Phevor’s power to identify the

gene but did not eliminate it, demonstrating that Phevor

gained power by combining multiple ontologies.

Removing the target gene from the GO and using only

the three phenotype ontologies (HPO, MPO, and DO),

Phevor still ranked the target gene in the top ten candi-

dates 36% of the time and in the top 100 candidates 82%

of the time. By comparison, using VAAST alone, Phevor

ranked the target gene among the top 10 and 100 candi-

dates 0% and 99% of the time, respectively. The 18%

false-negative rate was an artifact of the benchmark proce-

dure and resulted from removing the gene from the GO. In

brief, because the majority of human genes (18,824) are

already annotated to the GO, the prior expectation is
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that any new gene playing a role in the disease is more

likely to be annotated to the GO than not, causing Phevor

to prefer candidates already annotated to the GO in this

benchmarking scenario.

Similar trends were seen with using the GO14 alone. This

time, removing the gene from the MPO, HPO, and DO,

Phevor placed the gene containing the disease-causing

alleles among the top ten candidates 21% of the time

and among the top 100 candidates 80% of the time—still

much better than when it used VAAST alone. Recall that

for this analysis, Phevor was only provided with a pheno-

type description—not GO terms—and that the gene

containing the inserted disease-causing alleles was

removed from every ontology containing any phenotype

data, e.g., the, HPO, DO, andMPO. Thus, this rank increase

(e.g., from 0% to 21% in the top ten) was solely the result

of Phevor’s ability to integrate the GO into a phenotype-

driven prioritization process, demonstrating that Phevor

can use the GO to aid in the discovery of disease-causing

alleles in genes not previously associated with a given

disease phenotype. Collectively, these results demonstrate

that a significant portion of Phevor’s power is derived

from its ability to relate phenotype concepts in the HPO

to gene function, process, and location concepts modeled

by the GO.

Figure 2 demonstrates that Phevor improved the perfor-

mance of the variant-prioritization tool even when the

disease-causing alleles were located within genes with no

prior disease association. This is possible because even

when the gene containing the (novel) disease allele(s) is

absent from the HPO, Phevor can nonetheless assign it a

high score for disease association ðNgÞ after information

associated with its paralogs is propagated by Phevor from

the HPO to GO. This is a complex point, and an illustration

is helpful. Consider the case for two potassium-trans-

porter-encoding genes, A and B. Deleterious alleles in one

(A) are known to cause cardiomyopathy, whereas gene B

has no disease associations as of yet. If genes A and B are

both annotated in the GO as ‘‘potassium transporters,’’

when Phevor propagates the HPO associations of gene A

to the GO, the GO node ‘‘potassium transporter’’ will

receive some score, which in turn will be propagated to

gene B. Thus, even though gene B is absent from the

HPO, its Phevor disease association score will increase

because of its GO annotation. This illustrates the simplest

of cases. Many more-complex scenarios are possible. For

example, genes A and B might be annotated to different

nodes in the GO, in which case gene B’s disease association

score would increase proportionally after propagation

across the GO.

Figure 3 compares the relative performance of Phevor

to PHIVE,20 an online tool that uses ANNOVAR in

conjunction with mouse phenotype data to improve

ANNOVAR’s prioritization accuracy. PHIVE is accessible

through the Exomiser.20 For this benchmark, repeating

the process in Figure 1, we once again inserted two copies

of a known disease-causing allele randomly selected from
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Figure 4. Phevor Accuracy and Atypical Disease Presentation
In order to evaluate the impact of incorrect diagnosis or atypical
phenotypic presentation on Phevor’s accuracy, we repeated the
analysis shown in Figure 1; this time, we randomly shuffled
the phenotype descriptions for each gene at runtime and used
the same phenotype descriptions for every member of a case
cohort. For economic reasons, only VAAST results are shown.
The results of running VAAST with and without Phevor for case
cohorts of one, three, and five unrelated individuals are shown.
As would be expected, providing Phevor with incorrect phenotype
data significantly affected its diagnostic accuracy. For a single
affected individual, Phevor declined in accuracy from ranking
the damaged gene in the top ten candidates genome-wide in
100% of the cases to ranking it in 26% of cases. Nevertheless, Phe-
vor was still able to improve upon VAAST’s performance alone.
Phevor placed 95% of the damaged genes in the top ten candidates
with cohorts of three and five unrelated affected individuals,
despite the misleading phenotype data, given that the additional
statistical power provided by VAAST increasingly outweighed the
incorrect prior probabilities provided by Phevor.
HGMD25 (see Material and Methods for details) into a

target exome and repeated the process for 100 different

genes. The left column in Figure 3 provides a breakdown

of the results when ANNOVAR was used alone, the middle

column reports the results of uploading these same 100

exomes with their unprioritized variants to the Exomiser,

and the right column shows the results for the same 100

exomes with the use of ANNOVAR and Phevor. Although

the Exomiser did increase the percentage of cases for which

the target gene was located in the top 10 and top 100

candidates in comparison to ANNOVAR alone, it did so

at the expense of additional false negatives. In contrast,

Phevor obtained much better power on the same data set

(right column in Figure 3) without incurring any addi-

tional false negatives. Phevor was, however, ultimately

limited by ANNOVAR’s false-negative rate. This limitation

can be overcome simply by means of using VAAST reports

instead of ANNOVAR reports, in which case Phevor places
The Am
100%of the target genes among the top ten candidates (c.f.

Figure 1B).

Next, we sought to determine the impact of atypical dis-

ease presentation upon Phevor’s accuracy. The term atyp-

ical presentation refers to cases in which an individual has

a known genetic disease but does not present with the

typical disease phenotype. Reasons include previously

unreported alleles in known genes, previously undescribed

combinations of alleles, ethnicity (genetic-background

effects), environmental influences, and in some cases,

multiple genetic diseases presenting in the same individual

to produce a compound phenotype.27 Atypical presenta-

tion resulting from previously unreported disease-associ-

ated alleles in known genes and compound phenotypes

due to multiple disease-causing alleles are emerging as

a common occurrence in personal genome-driven diag-

nosis;9,27,28 thus, Phevor’s performance in such situations

is of interest.

Although a truly thorough investigation of atypical

presentation lies outside the scope of the current study,

Figure 4 addresses its impact on Phevor for case cohorts

of one, three, and five unrelated individuals by showing

the same benchmarking methodology as in Figure 1. For

this experiment, however, we randomly replaced each

target gene’s HPO-based phenotype description with an-

other’s, thereby mimicking an extreme scenario of atypical

presentation and/or misdiagnosis whereby each individual

presents with not only an atypical phenotype but also one

normally associated with some other known genetic dis-

ease. Unsurprisingly, this significantly affected Phevor’s

diagnostic accuracy. Using VAAST outputs for a single

affected individual, Phevor declined in accuracy from

ranking the damaged gene in the top ten candidates

genome-wide in 100% of the cases to ranking it in only

26% of the cases. More surprising is that Phevor was still

able to improve on VAAST’s performance alone, a phenom-

enon resulting again from Phevor’s use of the GO (as in

Figure 3) and a point that we address in more detail in

our Discussion.

The remaining columns in Figure 4 measure the impact

of increasing the size of the case cohort. As can be seen,

with three or more unrelated individuals all with the

same (shuffled) atypical phenotypic presentation, Phevor

performed very well, even when the phenotype informa-

tion was misleading. Thus, these results demonstrate

how Phevor’s ontology-derived scores, e.g., Ng in Equa-

tions 1 and 2, are gradually overridden in the face of

increasing sequence-based experimental evidence to the

contrary—a clearly desirable behavior.

Application of Phevor in the Clinic

We present three recent Utah Genome Project cases in

which we employed Phevor in tandem with ANNOVAR

and VAAST to identify disease-causing alleles in individuals

with an undiagnosed disease of a most likely genetic cause.

All three applications of Phevor involved either small

families or single affected individuals—scenarios for
erican Journal of Human Genetics 94, 599–610, April 3, 2014 605



which, as we have shown, existing prioritization tools are

underpowered. These analyses thus demonstrate Phevor’s

utility by using real clinical examples.

A Gene-Disease Association for NFKB2

We identified a family affected by autosomal-dominant,

early-onset hypogammaglobulinemia with variable auto-

immune features and adrenal insufficiency. Blood samples

were obtained from the affected mother, the unaffected

father, and their two affected children (family A). Blood

was also obtained from a fourth, unrelated affected indi-

vidual with the same phenotype (family B). Sequencing

was performed as described in Chen et al.,4 and variant

annotation was performed with the VAAST Annotation

Tool (VAT).3

Exome data from the four individuals in family A and

the affected individual in family B were then analyzed

with VAAST.2,3 In family A, this analysis identified a

deletion (c.2564delA [RefSeq accession number

NM_002502.4], resulting in p.Lys855Serfs*7) in NFKB2

(MIM 164012). VAAST identified a second NFKB2 allele

(c.2557C>T [p.Arg853*]) in family B. Subsequent immu-

noblot analysis and immunofluorescence microscopy of

transformed B cells from affected individuals showed

that theNFKB2mutations affect phosphorylation and pro-

teasomal processing of the p100 NFKB2 to its p52 deriva-

tive and, ultimately, p52 nuclear translocation.4

Figure 5A shows the results of running ANNOVAR (top

left panel) and VAAST (top right panel) on the union of

all variants identified in the affected children and mother

from family A and the affected individual from family B.

The x axes of the Manhattan plots in Figure 5A are the

genomic coordinates of the candidate genes. The y axes

show the log10 value of the ANNOVAR score, VAAST p

value, or Phevor score depending upon the method.

For purposes of comparison to VAAST, we transformed

the ANNOVAR scores to frequencies by dividing the num-

ber of candidates by the total number of annotated human

genes—hence the ‘‘shelf’’ of candidates in the ANNOVAR

plot at y ¼ 1.14 (about 13.8% of human genes). Both

ANNOVAR and VAAST identified a number of equally

likely candidate genes. NFKB2 (shown in red) was among

them in both analyses.

The lower panel of Figure 5A presents the results of

postprocessing these same ANNOVAR and VAAST output

fileswith theuse of Phevor, aswell as a Phenomizer-derived,

HPO-based phenotype description consisting of terms

‘‘recurrent infections’’ (HPO:0002719) and ‘‘abnormality

of humoral immunity’’ (HPO:0005368). Phevor identified

a single best candidate,NFKB2, by using the VAASToutput,

and the same gene ranked second with the ANNOVAR

output. Functional follow-up studies established NFKB2—

hence the noncanonical NF-kB signaling pathway—as a

genetic etiology for this primary immunodeficiency syn-

drome.4 Thus, these analyses demonstrate Phevor’s ability

to identify a human gene not currently associated with a

disease or phenotype in the HPO, DO, or MPO.
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An Atypical Phenotype Caused by a Dominant Allele

of STAT1

The proband is a 12-year-old male with severe diarrhea in

the context of intestinal inflammation, total villous atro-

phy, and hypothyroidism. He required total parenteral

nutrition to support growth, resulting inmultiple hospital-

izations for central-line-associated bloodstream infections.

During multidisciplinary comprehensive clinical evalua-

tion, we considered a diagnosis of X-linked immunodysre-

gulation, polyendocrinopathy, and enteropathy (IPEX

syndrome [MIM 304790]), but clinical sequencing of

FOXP3 (MIM 300292) and IL2RA (MIM 147730), genes

associated with IPEX,29,30 revealed no pathologic variants.

His clinical picture was life threatening, warranting

hematopoietic stem cell transplantation despite diagnostic

uncertainty. Prior to pretransplant myeloablation, DNA

was obtained from the proband and both parents.

Figure 5B shows the results of ANNOVAR and VAAST

analysis using the proband’s exome. As was the case for

NFKB2, both ANNOVAR and VAAST were underpowered

to distinguish the disease-associated gene and causative

alleles from a background of other likely candidates. Phe-

vor analyses of these same data, together with a phenotype

description consisting of the HPO terms ‘‘hyopthryoidism’’

(HP:0000812), ‘‘paronychia’’ (HP:0001818), ‘‘autoimmu-

nity’’ (HP:0002960), and ‘‘abnormality of the intestine’’

(HP:0002242), identified a single gene, STAT1 (MIM

600555), as the third-ranked candidate in the ANNOVAR

outputs and the best candidate in the VAAST analyses

(lower panels of Figure 5B). Subsequent analyses of the

proband’s parents determined that the top-scoring variant

in the VAAST-Phevor run was a single STAT1 de novo

mutation (c.1154C>T [RefSeq NM_139266.2]) affecting

the DNA-binding region of STAT1 (p.Thr385Met [RefSeq

NP_009330.1]). We confirmed the variant by Sanger

sequencing.

Multiple-protein-sequence alignment shows conserva-

tion across phyla at this amino acid position (data not

shown). Moreover, gain-of-function mutations in STAT1

cause immune-mediated human disease,31 and STAT1

encodes a transcription factor that regulates FOXP3.32

Functional studies have indicated that this mutation leads

to an overexpression of STAT1,32–34 suggesting gain-of-

function mutation as a mechanism. Supporting this

conclusion are recent studies reporting that this same allele

causes chronic mucocutaneous candidiasis35 and an IPEX-

like syndrome.32 These results highlight Phevor’s ability to

use only a single affected exome to identify a mutation

located in a known disease-associated gene and producing

an atypical phenotype.

A Mutation in a Known Disease-Associated Gene,

ABCB11

The proband is a 6-month-old infant with an undiagnosed

liver disease phenotypically similar to progressive familial

intrahepatic cholestasis.36 To identify mutations in the

proband, we performed exome sequencing on the affected
014
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Figure 5. Phevor Analyses of Three
Clinical Cases
Plotted on the x axes of each Manhattan
plot are the genomic coordinates of the
candidate genes. The y axes show the
log10 value of the ANNOVAR score, VAAST
p value, or Phevor score depending upon
the panel. Black, filled circles denote top
ranked gene(s), all of which had either
the same ANNOVAR score or the same
VAAST p value. Red circles denote the
gene containing disease-causing allele(s).
For purposes of comparison to VAAST,
we transformed the ANNOVAR scores to
frequencies by dividing the number of
gene candidates identified by ANNOVAR
by the total number of annotated human
genes.
(A) Phevor identified NFKB2 as a disease-
associated gene. (Top) Results of running
ANNOVAR (left) and VAAST (right) on
the union of variants identified in affected
members of family A and those in the
affected individual from family B. Both
ANNOVAR and VAAST identified a large
number of equally likely candidate genes.
NFKB2 (shown in red) was among them
in both cases. (Bottom) Phevor identified
a single best candidate, NFKB2, by using
the VAAST output, and NFKB2 was ranked
second with the ANNOVAR output (two
other genes were tied for first place).
(B) Phevor identified a de novo variant
in STAT1 as responsible for a previously
undescribed phenotype in an already
disease-associated gene. (Top) Results of
running ANNOVAR (left) and VAAST
(right) on the single affected individual’s
exome. Both ANNOVAR and VAAST iden-
tified multiple candidate genes. STAT1
(shown in red) was among them in both
cases. (Bottom) Phevor identified a single
best candidate, STAT1, by using the VAAST
output. STAT1was the third best candidate
with the ANNOVAR output.
(C) Phevor identified a mutation in
ABCB11, a known disease-associated
gene. (Top) Results of running ANNOVAR
(left) and VAAST (right) on the single
affected child’s exome. Both ANNOVAR
and VAAST identified a number of equally
likely candidate genes. ABCB11 (shown in
red) was among them. (Bottom) Phevor
identified a single best candidate,
ABCB11, by using the ANNOVAR and
VAAST outputs.
individual and both parents. Sequencing and bioinformat-

ics processing were performed as described in the Material

and Methods.

For these Phevor analyses, a single HPO phenotype

term was used: ‘‘intrahepatic cholestasis’’ (HP:0001406).

As shown in Figure 5C, Phevor analysis identified a single

candidate gene (ABCB11) in the proband’s exome

sequence.

Mutations in ABCB11 (MIM 603201) are known to

cause progressive familial intrahepatic cholestasis type 2.

The variants identified by VAAST, and supported as causa-
The Am
tive by Phevor, form a compound heterozygote in the

proband. We confirmed these variants by Sanger

sequencing (see Material and Method). The paternal

variant (c.3332T>C [RefSeq NM_003742.2], leading to

p.Phe1111Ser) and the maternal variant (c.890A>G

[p.Glu297Gly]) are both considered highly damaging

by SIFT. The maternal variant is known to cause intrahe-

patic cholestasis,37 whereas the paternal mutation is not

currently associated with disease. These results demon-

strate Phevor’s ability to use only a single affected exome

to identify a previously unreported mutation located in a
erican Journal of Human Genetics 94, 599–610, April 3, 2014 607



known disease-associated gene and present in trans to a

known disease-causing allele.
Discussion

We have presented a series of benchmark and clinical

applications demonstrating that Phevor provides an effec-

tive means of improving the diagnostic power of widely

used variant-prioritization tools. These results demonstrate

that Phevor is especially useful for single-exome and small,

family-based analyses, the most commonly occurring clin-

ical scenarios and ones for which existing variant-prioriti-

zation tools are most inaccurate and underpowered.

As we have shown, Phevor’s ability to improve the accu-

racy of variant-prioritization tools is the result of its ability

to relate phenotype anddisease concepts inontologies such

as the HPO and DO to gene function, process, and location

concepts modeled by the GO. This allows Phevor to model

key genetic-disease features that are not taken into account

by existing methods that employ phenotype information

for variant prioritization.10,20 For example, paralogous

genes often produce similar diseases38 because they have

similar functions, operate in similar biological processes,

and are located in the same cellular compartments.

Phevor scores take into account not only the evidence

that a gene is associated with an individual’s illness but

also the evidence that it is not. In typical whole-exome

searches, every variant-prioritization tool identifies many

genes harboring what it considers to be deleterious muta-

tions. Often themost damaging of them are found in genes

without any known phenotype associating them with the

disease of interest; moreover, in practice, highly delete-

rious alleles are often false-positive variant calls. Phevor

successfully downweights these genes and alleles, causing

the target gene to climb in rank as an indirect result. This

phenomenon is well illustrated by the fact that Phevor

improved the accuracy of variant-prioritization and

genome-wide search tools even when provided with an

incorrect phenotype description, e.g., Figure 4. This result

underscores the consistency of Phevor’s approach; it also

has some important implications, namely that the lack of

previous disease association, weak phylogenetic conserva-

tion, and the lack of GO annotations for a gene are (weak)

prima facie evidence against disease association.

The interplay of all of the above factors is well illustrated

by the clinical applications we present from the Utah

Genome Project. For these analyses, we employed Phevor

in tandem with ANNOVAR and VAAST to identify

disease-causing alleles. All three cases involved small case

cohorts containing either related individuals or single

affected exomes. For all of these cases, variant prioriti-

zation alone was insufficient to identify the causative

alleles, whereas when combined with Phevor, these same

data revealed a single candidate. These analyses demon-

strate Phevor’s ability to use real clinical examples to iden-

tify a previously unreported mutation present in trans to
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a known disease-causing allele (ABCB11), dominant

mutations in a gene not previously associated with the

disease phenotype (NFKB2), and a de novo dominant allele

located in an known disease-associated gene (STAT1) and

producing an atypical phenotype. Collectively, these cases

illustrate that Phevor can improve diagnostic accuracy for

individuals with typical or atypical disease phenotypes and

that it can also use information latent in ontologies to

discover disease-causing alleles in genes not previously

associated with human disease.

The incorporation of new ontologies and gene-pathway

information into Phevor is an active area of development.

Phevor can employ any variant-prioritization tool and any

ontology, so long as the ontology has gene annotations

and is available in OBO format.39 Over 50 biomedical

ontologies, many satisfying both criteria, are available at

the Open Biological and Biomedical Ontologies (OBO)

Foundry. Thus, Phevor’s approach should also prove useful

for nonmodel-organism and agricultural studies. Such

applications raise interesting points. For the analyses pre-

sented here, we have used the MPO to leverage model-

organism phenotype data to improve diagnostic power

for humans. For application to model organisms, novel

organisms, and agriculture, the HPO could be used in a

manner analogous to that of the MPO in the analyses pre-

sented here, i.e., Phevor could provide a systematic means

to bring human disease knowledge and human gene anno-

tations to bear for nonmodel-organism and agricultural

studies. A publicly available Phevor web server and test

data sets are available online.
Supplemental Data

Supplemental Data include five figures and one table and can be

found with this article online at http://www.cell.com/ajhg.
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Web Resources

The URLs for data presented herein are as follows:

1000 Genomes, http://www.1000genomes.org/

ANNOVAR, http://www.openbioinformatics.org/annovar/

Burrows-Wheeler Aligner (BWA), http://bio-bwa.sourceforge.net/

The Exomiser, https://www.sanger.ac.uk/resources/databases/

exomiser/query/

Genome Analysis Toolkit (GATK), http://www.broadinstitute.org/

gatk/

Human Gene Mutation Database (HGMD), http://www.hgmd.org

Online Mendelian Inheritance in Man (OMIM), http://www.

omim.org

Open Biological and Biomedical Ontologies (OBO) Foundry,

http://www.obofoundry.org

PhastCons, http://compgen.bscb.cornell.edu/phast/phastCons-

HOWTO.html

Phevor Web, http://weatherby.genetics.utah.edu/cgi-bin/Phevor/

PhevorWeb.html

RefSeq, http://www.ncbi.nlm.nih.gov/RefSeq

SIFT, http://sift.jcvi.org/

Utah Genome Project, http://healthsciences.utah.edu/

utah-genome-project/

The Variant Annotation, Analysis, and Search Tool (VAAST),

http://www.yandell-lab.org/software/vaast.html
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