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Population Genetic Inference from Personal
Genome Data: Impact of Ancestry and Admixture
on Human Genomic Variation

Jeffrey M. Kidd,1,14,20 Simon Gravel,1,20 Jake Byrnes,1,15 Andres Moreno-Estrada,1 Shaila Musharoff,1

Katarzyna Bryc,2,16 Jeremiah D. Degenhardt,2,17 Abra Brisbin,2,18 Vrunda Sheth,3 Rong Chen,4

Stephen F. McLaughlin,3 Heather E. Peckham,3 Larsson Omberg,2 Christina A. Bormann Chung,3

Sarah Stanley,3 Kevin Pearlstein,3 Elizabeth Levandowsky,3 Suehelay Acevedo-Acevedo,5 Adam Auton,6

Alon Keinan,2 Victor Acuña-Alonzo,7,8 Rodrigo Barquera-Lozano,7 Samuel Canizales-Quinteros,8

Celeste Eng,9 Esteban G. Burchard,9 Archie Russell,10 Andy Reynolds,2 Andrew G. Clark,2,11

Martin G. Reese,10 Stephen E. Lincoln,12 Atul J. Butte,4 Francisco M. De La Vega,1,13,19,21,*
and Carlos D. Bustamante1,21,*

Full sequencing of individual human genomes has greatly expanded our understanding of human genetic variation and population

history. Here, we present a systematic analysis of 50 human genomes from 11 diverse global populations sequenced at high coverage.

Our sample includes 12 individuals who have admixed ancestry and who have varying degrees of recent (within the last 500 years)

African, Native American, and European ancestry. We found over 21 million single-nucleotide variants that contribute to a 1.75-fold

range in nucleotide heterozygosity across diverse human genomes. This heterozygosity ranged from a high of one heterozygous site

per kilobase in west African genomes to a low of 0.57 heterozygous sites per kilobase in segments inferred to have diploid Native Amer-

ican ancestry from the genomes of Mexican and Puerto Rican individuals. We show evidence of all three continental ancestries in the

genomes of Mexican, Puerto Rican, and African American populations, and the genome-wide statistics are highly consistent across indi-

viduals from a population once ancestry proportions have been accounted for. Using a generalized linear model, we identified subtle

variations across populations in the proportion of neutral versus deleterious variation and found that genome-wide statistics vary in ad-

mixed populations even once ancestry proportions have been factored in.We further infer that multiple periods of gene flow shaped the

diversity of admixed populations in the Americas—70% of the European ancestry in today’s African Americans dates back to European

gene flow happening only 7–8 generations ago.
Introduction

Understanding the relative effects of different population

genetic forces on the apportionment of human genomic

variation is a central focus of medical and population

genomics.1–5 Much of what we know comes from

analyzing patterns of common, and, therefore, ancient

genetic polymorphisms via genotyping across diverse

human populations.6–8 Recent studies have used

sequencing approaches to reveal a more complete and

genome-wide picture of variation, including lower-

frequency variants with a more recent evolutionary
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origin.6,9 In particular, exome sequencing across thou-

sands of participants in medical genetic studies of complex

disease now provides strong evidence that rare alleles in

the human genome are enriched with mutations that

have functional (and presumably deleterious) conse-

quences.10 However, little is known empirically about

whether genomes from different populations harbor

similar levels of neutral and deleterious variation and

whether population bottlenecks and recent population

growth play critical roles.

To understand the impact of demographic history and

natural selection on genomic variation, we analyzed data
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from 50 human genomes sequenced to high coverage (at

least 18–203). All the genomes analyzed here come from

participants who are part of the 1000 Genomes Project or

HapMap Project and who have given consent for public

release of genomic data. Two key questions we address

are how to analyze genomes from admixed populations

and how to interpret individual-level patterns of variation

in light of inferred demographic history.

Intercontinental travel and the processes of colonialism

have dramatically reshaped the historical distribution of

human genetic variation. In particular, much of the

world’s population now traces its genetic ancestry to

multiple continental source populations. Understanding

how to analyze and interpret admixed genomes will be

critical for enabling transethnic and multiethnic medical

genetic studies2–4 and for ensuring that the findings of

genetics research are broadly applicable.5

Interpreting admixed genomes is easiest when the

source populations are highly diverged; the ancestry of

specific genomic segments can then be inferred on the

basis of panels of genotyped SNPs from populations related

to the source populations.11–17 In this study, we combined

such a method of local-genomic-ancestry assignment with

the analysis of full-genome sequence data from 12 individ-

uals with recent ancestry from distinct continental popula-

tions. Our analyses allow us to refine our understanding of

the effects of population history on patterns of variation

both among global populations and within the genomes

of individuals who have admixed ancestry.

A hypothesis raised by sequencing exomes from African

American and European American individuals is that the

former contain proportionally fewer damaging mutations

than the latter as a result of a larger effective population

size.4 This hypothesis has not been tested in additional

populations and has potentially profound implications

for how to interpret personal genomic variation, particu-

larly for American genomes that contain segments of Euro-

pean, African, and Native American ancestry. Under-

standing these dynamics is key to properly controlling

for ancestry in transethnic and multiethnic medical

sequencing studies, in which segments might vary in the

background rate of neutral versus deleterious variation.

Given the stochastic nature of the evolutionary process,

we might imagine that individual genomes might harbor

so much stochastic noise that small population-level

differences might be obscured. However, methods have

recently been proposed for inferring demographic history

from singly sequenced genomes18 by the exploitation of

variation in the depth of the time to the most recent

ancestor (TMRCA) for the paternal and maternal chromo-

somes among the thousands of unlinked genomic regions

in a given genome. In this manuscript, we show that indi-

vidual admixed genomes contain a wealth of information

about the admixture history and about the ancient demog-

raphy of the source populations, andwe propose a diversity

of tools for leveraging this information at the individual

and population levels.
The Americ
Material and Methods

Genotype Phasing and Reference Panels
Phased haplotypes required for local-ancestry inference were ob-

tained from genotyped trios with the use of BEAGLE.19 For the

YRI (Yoruba in Ibadan, Nigeria) and CEU (Utah residents with

ancestry from northern andwestern Europe from the CEPH collec-

tion) reference panels, as well as for ASW (African ancestry in

Southwest USA) and MXL (Mexican ancestry in Los Angeles, Cal-

ifornia) individuals, we used SNP genotypes reported by the

Phase 3 HapMap Project.6 For sample NA19730, we used geno-

types from HapMap 3 release 1. For NA19648 and the PUR (Puerto

Rican in Puerto Rico) trio, we used genotypes obtained from

Complete Genomics sequencing at HapMap 3 positions. Given

that currently available Native American reference panels do not

include trio samples, we generated Affymetrix 6.0 SNP array data

for ten trios of Native American populations from Mexico, which

capture the diversity of Native American ancestry present in the

samples analyzed (Figure S2, available online). Analysis utilized

the four unique haplotypes (transmitted and nontransmitted) rep-

resented by each trio.

Local-Ancestry Assignment
We performed local-ancestry assignment by using PCAdmix.20,21

This approach relies on phased data from reference panels and

the admixed individuals. Each chromosome is analyzed indepen-

dently, and local-ancestry assignment is based on loadings from

principal-component (PC) analysis of the three putative ancestral

population panels. The scores from the first two PCs are calculated

inwindowsof 100SNPs for eachpanel individual (after the removal

of SNPs with linkage disequilibrium [LD] > 0.80 for a total of

288,112 SNPs and a median window length of 847 kb). For each

window, the distribution of individual scores within a population

is modeled to fit a multivariate normal distribution. Given an ad-

mixed chromosome, these distributions are used for computing

likelihoods of belonging to each panel. These scores are then

analyzed in a hiddenMarkovmodel (HMM)with transition proba-

bilities as in Bryc et al.22 The g (generations) parameter in theHMM

transition model was determined iteratively for maximizing the

total likelihoodof eachanalyzedpopulation. Local-ancestry assign-

ments were determined with a 0.9 posterior probability threshold

for each window with the use of the forward-backward algorithm.

In analyses that required estimating the length of continuous

ancestry tracts, the Viterbi algorithm was used. An assessment of

the accuracy of this approach is given in the Appendix SA.

Admixture Characterization from Ancestry Tract-

Length Distributions
The lengthdistributionof continuous ancestry tracts obtainedwith

the Viterbi analysis in PCAdmix was compared to predictions with

the use of an extended space Markov model of ancestry along the

genome.Statesof thisMarkovmodel are labeledbybothpopulation

of origin and time of migration. Transition rates between states are

functions of the time-dependent gene flow.23 Because the number

of time-dependent gene-flowmodels is very large, we chose simple

parameterizations of themodels; for African Americans, we consid-

ered a pulse of European and Native American migration; this was

followed by a pulse of Africanmigration and another pulse of Euro-

peanmigration.Timingandmagnitudeof eachmigrationpulsewas

allowed to vary andwas fitted to the data in amaximum-likelihood

framework.23 For the Mexican Americans, we considered a model
an Journal of Human Genetics 91, 660–671, October 5, 2012 661



with continuous geneflow for bothNative andEuropeanancestries

and a pulse of gene flow for African ancestry.
Genome Sequence Data
We analyzed full-genome sequence data from 50 individuals

(Table S1), including 48 samples (coverage of 46–803) from 11

populations sequenced by Complete Genomics and two samples

(NA19836 and NA19730; coverages of 213 and 183, respectively)

sequenced with SOLiD technology. This study utilized genomic

data generated from cell lines of deidentified individuals from

the HapMap Project and 1000 Genomes Project.
SOLiD Data Processing
We used the Applied Biosystems (ABI) SOLiD Corona Lite pipeline

to align reads to the reference human sequence (NCBI build h36,

UCSC hg18). The program guarantees finding all alignments

between a read and the reference sequence with up to M

mismatches.24 We allowed up to two mismatches for 25 bp reads

and up to five mismatches for 50 bp reads. After alignment, a pair-

ing step was performed for identifying mate pairs that are in the

proper order and orientation and that lie at distances within the

empirical distribution of distances for the libraries created (target

insert size of 1,500 bp). Pairs of reads only aligning in one location

in the color-space reference with up to the given number of

mismatches were referred to as uniquely aligned and were used

for the subsequent analysis steps (beads with a missing pair were

not used for SNP detection). The total average haploid coverage

of uniquely mapping paired reads achieved was 213 for sample

NA19836 and 183 for NA19730. The ABI SOLiD diBayes algo-

rithm was used for SNP detection from the color-space align-

ments.24 diBayes is a Bayesian algorithm that includes color-space

error detection—an error model that uses probe and positional

errors, as well as color quality values—and the prior probability

of population heterozygosity in a framework similar to that of

PolyBayes.25 The raw diBayes output for chr1–chr22 and chrX

consisted of 3,824,140 variant positions for NA19730 and

4,681,232 variant positions for NA19836.

We applied an additional set of filters before beginning our anal-

ysis. First, we removed variants with a depth of coverage greater

than or equal to 100. From the remaining variants, we established

amaximum coverage threshold of 3 standard deviations above the

mean coverage, which corresponded to a coverage threshold of 36

for NA19730 and of 38 for NA19836. Next, in order to limit

spurious SNPs caused by mapping artifacts or indels, we removed

all variants located in regions annotated as simple repeats (by the

tandem repeats finder program26) as reported on the UCSC

Genome Browser, as well as positions located within 50 bp of

a small indel identified by the SOLiD small indel tool. For analyses

in which correct assignment of heterozygous genotypes is critical,

we further restricted SNPs to a set with coverage of at least six reads.

We identified genomic regions inwhich a SNP call could have been

made by the application of the same read depth, small indel, and

simple-repeat filters. Additionally, we identified uncalled regions

of questionable sequence quality by using the calling failure flags

reported by the diBayes consensus call file. Combining these call-

able regionswith identified SNPs permitted us to identify positions

for which an individual was homozygous for the reference allele.
Complete Genomics Data Processing
Genome data for individuals sequenced by Complete Genomics

are available at the website provided in the Web Resources. These
662 The American Journal of Human Genetics 91, 660–671, October
data were generated and analyzed with Complete’s local de novo

assembly-based pipeline.27 Specifically, we used the alignments

against NCBI build 36 and data processed with pipeline version

1.10. We selected sites with single-nucleotide variants (SNVs)

called at the default thresholds as included in the CG ‘‘var’’ files,

and we considered ‘‘no-call’’ regions separately from those confi-

dently called homozygous reference in each genome. Because

our analysis focused on SNVs, positions containing called inser-

tions, deletions, substitutions, or partial (half) calls were excluded

from this analysis. Copy-number- and structural-variation predic-

tions from the CG pipeline were not considered.

TMRCA Estimation from Sequence Data
Estimated TMRCA for two haplotypes was calculated in nonoverlap-

ping 10 kb windows for each pair of homologous chromosomes in

each individual. For SOLiD data, analysis was limited to callable

positions that contained a read depth of at least 6. Complete

Genomics data were filtered as described above. To be included

in the analysis, a 10 kbwindowhad to contain at least 5 kb of ‘‘call-

able’’ sequence, contain 5 kb of sequence that aligned to a primate

out group, and be entirely contained within a single ancestry

assignment class. We additionally removed all windows that over-

lapped with regions annotated as segmental duplications in the

UCSC Genome Browser.

On the basis of the observed number of heterozygous positions,

TMRCA was estimated as described by Tavare et al.28 under

a constant population-size assumption. The conditional expected

time for a pair of chromosomes to coalesce given k nucleotide

differences in a specified nonrecombining region is

EðT2 j k nucleotide differencesÞ ¼ ð1þ kÞ
ð1þ qÞ;

where q is the population genetic mutation rate (q ¼ 4 Ne m), Ne is

the effective population size, and m is the per-generation mutation

rate for this genomic region. This estimator calibrates SNP diver-

sity by an estimate of the local mutation rate. Mutation rates

were normalized on the basis of comparisons to chimpanzees

with the use of genome alignments to the human hg18 assembly

obtained from the UCSC Genome browser. Following Glazko and

Nei,29 we fixed the human-chimp separation to be 240,000 gener-

ations and expressed times in years by assuming 25 years per

generation and an effective population size of 10,000.

PSMC Analysis from Sequence Data
Pairwise sequentially Markovian coalescent (PSMC) analysis was

performed as described with the use of default parameters.18 In

brief, the input to the PSMC method is an encoding of 100 bp

windows along the genome and indicates whether each window

contains at least one heterozygous position or no heterozygous

positions or is not callable. For the ancestry-specific analysis of ad-

mixed genomes, we labeled the ancestry segments considered call-

able and split the data into separate segments for analysis when-

ever a stretch of 15 kb of noncallable data was encountered.

PolyPhen Analysis
Autosomal SNPs for all individuals were run through an in-house

SNP annotation pipeline restricted to those protein-coding vari-

ants with a UniProtKB annotation and scored with the Poly-

Phen-2 algorithm with thresholds set with the use of the HumDiv

data set, which is the version recommended for predicting the

damaging effect of nonsynonymous SNPs obtained from sequence
5, 2012



data.30 For SNPs with a prediction by PolyPhen-2, a probability of

being deleterious was reported. These probabilities were parti-

tioned with cutoffs of 0.2 and 0.8 for assigning categories of

‘‘benign,’’ ‘‘possibly damaging,’’ and ‘‘probably damaging’’ as per

PolyPhen-2 documentation. A generalized linear model of the

counts in each PolyPhen category was fitted in R under the

assumption of a Poisson distribution of counts in each category.
Results

Sequence Variation among Individuals

The genomic data we analyzed were collected by Complete

Genomics27 and Applied Biosystems SOLiD24 sequencing

from 50 individuals across 11 populations sampled by

the 1,000 Genomes and International HapMap Projects.

These individuals included those with African (YRI, MKK

[Maasai from Kenya], and LWK [Luhya from Webuye,

Kenya]), South Asian (GIH [Gujurati Indian from Houston,

TX]), European (CEU and TSI [Tuscans from Italy]), and

East Asian (CHB [Han Chinese from Beijing] and JPT [Japa-

nese from Tokyo]) ancestry, as well as African Americans

(ASW), Mexican Americans (MXL), and Puerto Ricans

(PUR). After applying a series of filters, we assessed the

quality of the SNP calls made from short-read sequence

data by comparing them to genotypes inferred from

high-density arrays on a subset of individuals, and we

found an average of greater than 99.5% concordance

across millions of common genetic variants (Table S1). As

a first means of comparing these genomes, we estimated

nucleotide diversity across an average of 2.5 billion callable

sites by using two metrics: the average number of SNPs per

kilobase relative to the genome reference sequence and the

average nucleotide heterozygosity for each genome

(Figure 1 and Table S2). Consistent with expectations

from studies of haplotype and sequence diversity,6,31 we

found striking variation in genome-wide nucleotide diver-

sity across individuals sequenced with the same technolo-

gies. For example, African genomes harbored, on average,

18% more genetic variation than non-African genomes.

As expected,32 regions of the genome with higher levels

of selective constraint as measured by the GERP algo-

rithm33 showed fewer polymorphisms and proportionally

more heterozygous than homozygous alternative sites per

genome (Figure S1). However, there are systematic differ-

ences across genomes of varying ethnic ancestry in this

ratio.

Sequence Variation within Individuals with Recent

Admixed Ancestry

Several aspects of sequence variation, including the

density of SNPs, the degree of nucleotide heterozygosity,

the proportion of novel SNPs relative to other sequencing

efforts, and the ratio of synonymous to nonsynonymous

polymorphisms, vary in admixed individuals in a manner

correlated with global ancestry (Figure 1 and Table S2).

However, these measures of diversity are not simple

weighted averages over values of the different ancestries;
The Americ
for example, we observed more low-frequency alleles in

the five sequenced MXL individuals than in other popula-

tions, such as CEU or CHB.

Limiting the analysis to genomic segments from the

MXL population inferred to have European ancestry re-

moves this effect (see Figure 2 and the next section). The

presence of more rare variants than expected in a neutral,

constant-size panmictic population (standard neutral

model [SNM]) has been demonstrated in human popula-

tions as a result of nonneutral evolution and nonconstant

population sizes; Figure 2 shows that admixture also leads

to more rare variants than expected in the SNM.

Local-Genomic-Ancestry Assignment with SNP

Haplotypes

To explore the impact of continental ancestry on genetic

variation within individuals, we focused on 12 genomes

from individuals who have recent (<500 years) ancestry

from different continental populations. One individual,

sequenced with the SOLiD system, was estimated to have

over 88% Native American ancestry (Figure 3A). Because

of the relative demographic isolation of European, African,

and Native American groups from 20,000 years ago to the

dawn of intercontinental travel, individual haplotypes in

current populations can often be traced back to a specific

continental group over this period. Using the PCAdmix

algorithm,20–22 we partitioned each chromosome into

segments of inferredAfrican, European, orNativeAmerican

ancestry.Weobtained phasedhaplotypes for variants geno-

typed in parent-offspring trios, including a set of Mexican

Native American trios genotyped for this project

(Figure S2). We analyzed each chromosome independently

and yielded tracts of ancestry along each chromosome

(Figure 3B). We assessed the accuracy of our assignments

by using simulations that construct simulated admixed

genomes of known ancestry on the basis of copying phased

haplotypes from a reference panel (see Appendix SA). Our

simulations indicate that a cutoff of 0.9 applied to theposte-

rior probability for the ancestry of eachwindow (calculated

with the forward-backward algorithm) yields an accuracy

rate of 80%–99% for local-genomic-ancestry assignment

(see Appendix SA). With these criteria, we assigned an in-

ferred ancestry to 79%–95% of each genome (Table S3).

Inference of Population History with Ancestry Tract

Lengths

To explore the recent history of admixed populations, we

considered the length distribution of continuous tracts of

inferred ancestry provided by Viterbi decoding.34 Broadly

speaking, we expect that the average length of ancestry

tracts decreases with time after admixture and that the

overall shape of the distribution gives hints about the

actual migratory process. Using models including repeated

or continuous gene flow, we modeled tract-length distribu-

tions obtained from phased SNP genotype information6

for 100 haploid MXL genomes from 25 trios and for 40

haploid ASW genomes from 10 trios.
an Journal of Human Genetics 91, 660–671, October 5, 2012 663



Figure 1. Summary Statistics from Individual Sequenced Genome
Individual diversity statistics are given on the basis of sequence data from Complete Genomics. In addition to mean values from each
population, results partitioned by inferred local genomic ancestry are given for the ASW (African ancestry in Southwest USA) (orange
bars) and MXL (Mexican ancestry in Los Angeles, California) (purple bars) populations. Only individuals with at least 1 MB of each as-
signed ancestry are included. Novel SNPswere determined relative to variants discovered by the 1000Genomes low-coverage sequencing
pilot and were limited to genomic positions interrogated by the project. Red circles representmean values for each sample, and error bars
represent 95% confidence intervals found by bootstrap resampling across all chromosomes from samples for each population.
We observed departures from the predictions of the

commonly used ‘‘pulse’’ admixture model, in which each

population contributes migrants at a discrete period in

time. Specifically, we observed an excess of long European

tracts in both populations and an excess of long Native

American tracts in the Mexican population, suggesting

more recent gene flow from these groups. Indeed, allowing

for continuous or repeated migration results in very good

agreement with the data (Figure 4) and gives admixture

timing estimates somewhat older than those previously

obtained from genetic data.35,36 Both models involve

continuous gene flow from a European source, and the
664 The American Journal of Human Genetics 91, 660–671, October
Mexican American model also includes continuous Native

American gene flow. The best-fit model for African Ameri-

cans involves admixture, starting 15 generations ago,

between individuals of African ancestry and a population

of mixed European and Native American ancestry. This

model suggests that 70% of the European ancestry in

today’s African Americans dates back to European gene

flow 7–8 generations ago.

Such models are simplifications of the historical

processes, and we have limited power to detect some

aspects of the migration history, such as the duration of

the putative second pulse of European migration; such
5, 2012



Figure 2. Impact of Admixture on the Site Frequency Spectrum
The MXL population shows more rare variants than the CEU
(Utah residents with ancestry from northern and western Europe
from the CEPH collection) or CHB (Han Chinese from Beijing)
populations. Limiting consideration to MXL segments with in-
ferred European ancestry (MXL 2E) removes this effect.
finer analyses would most likely require the integration of

genetic and historical data. Nevertheless, the continuous-

gene-flow model in Mexican Americans resolves an

apparent inconsistency: although the historical record
Figure 3. Local-Ancestry Inference
Local genomic ancestry was inferred for the genomes of admixed in
(A) The first two principal components of variation for admixed indi
ican source populations. The markers outlined in black represent 12
(B) Ancestry assignment for chromosome 7. The use of phased haplo
transmitted and nontransmitted chromosome separately. The followi
African ancestry; blue, inferred Native American ancestry; gray, region

The Americ
suggests that the contact between Europeans and Native

American predated the onset of the slave trade, the exis-

tence of relatively long Native American and short west

African tracts suggests that European and west African

admixture must have predated contact with Native Amer-

icans. Johnson et al.37 hypothesized that this might be due

to significant European and west African admixture prior

to the development of the slave trade. However, our results

show that such a hypothesis is not necessary and that

more detailed quantitative models of recent, continuous

gene flow can account for the data. We finally point out

that even though the continuous-gene-flow models pre-

sented here allow for improved agreement with both

historical and genetic data, they are still simplifications

of the historical process. Distinguishing finer patterns of

time-dependent gene flow will most likely require the inte-

gration of genetic and historical data.

Inference of Population History from Sequence Data

The observed patterns of sequence variation among the

genomes of individuals with recent admixed ancestry

reflect population-history differences—e.g., periods of

growth and bottleneck leading to changes in effective pop-

ulation size—experienced by the ancestral populations

that contribute to the genomic repertoire of present-day

admixed populations. Because of recombination, the

diploid genome of a single individual represents samplings
dividuals with the use of PCAdmix.
viduals are shown relative to European, African, and Native Amer-
admixed individuals who have been sequenced.
types obtained from trios permit assignment of ancestry for each
ng colors are used: red, inferred European ancestry; yellow, inferred
s not assigned; and black, centromere and genome assembly gaps.

an Journal of Human Genetics 91, 660–671, October 5, 2012 665



Figure 4. Inference from Admixture Tract-Length Distributions
The distribution of lengths of European, African, and Native American ancestry tracts are shown for the (A) MXL and (B) ASW popula-
tions. Analysis considered parents of genotyped HapMap 3 trios. The dots indicate observed data obtained from the Viterbi local-
ancestry assignment from PCAdmix. The lines and shading represent predictions and 95% confidence intervals, respectively, obtained
from themodels indicated. The amount and origin of gene flow are indicated by pie-chart size and coloring, and the ancestry proportion
over time in the model population is illustrated below.
of hundreds of thousands of independent lineages that

coalesced sometime in the past. We explored the distribu-

tion of the age of these coalescence events (the TMRCA) by

calculating sequence divergence between pairs of homolo-

gous chromosomes in each individual for nonoverlapping

10 kb segments. On the basis of divergence from chimpan-

zees and assumptions about chimp-human speciation

time and long-term effective population sizes,29 we esti-

mated the TMRCA for each genomic window.28 This

approach shows clear differences among major population

groups. For example, the genomes of European popula-

tions have a higher fraction of more recent TMRCA than

do those of African populations (Figure 5A), and Asian

populations are more recent than European populations,

consistent with stronger bottlenecks in these groups.38

We applied this approach to the genomes of the admixed

individuals and analyzed each category of ancestry sepa-

rately. In this manner, we could study multiple ancestral

populations by sequencing single individuals. This anal-

ysis largely recapitulated expected patterns of history;

Native American portions of the genome had the highest

rate of recent coalescence times and were followed by

Europeans (Figure 5B and Figure S3). Because local-

ancestry inference can be performed with proxy popula-

tions, this demonstrates how whole-genome demographic

analysis can be performed in the absence of data from the

actual source populations. Furthermore, only genotype

data from the panel samples are required for performing

such analyses on sequencing data from the admixed pop-

ulation.

The proportion of lineages that coalesce in a time period

is informative about the effective population size at that

time. We used these data to explore changes in effective
666 The American Journal of Human Genetics 91, 660–671, October
population sizes over time by using the recently described

PSMC model,18,39 which also considers sequence differ-

ences between homologous chromosomes within a single

individual. Using a larger set of genomes, we recapitulated

the basic picture of human population history previously

reported,18 but our larger sample size allowed for a finer

analysis. Using this method on 50 individual genomes,

we were able to clearly observe population-size change

associated with the out-of-Africa migration (Figure 6A).

We also saw long term (>100,000 years ago) changes in in-

ferred effective population size, which might indicate the

formation and dissolution of population structure among

ancestral human groups.18 We found that individuals

from a given population sequenced with the same tech-

nology show very consistent results but that differences

between Complete Genomics and SOLiD sequencing plat-

forms result in differences in inferred population sizes,

emphasizing that the PSMC model might be highly sensi-

tive to technical biases in whole-genome sequencing.

Further study of systematic technical biases in genome

sequencing associated with a variety of technologies is war-

ranted.40,41 Because the results from the Complete Geno-

mics platform are in better agreement to those of Li and

Durbin (when they are applied to samples from related

populations) and because Table S1 shows that Complete

Genomics data have a higher concordance rate with geno-

type data than do the Solid Technology data analyzed in

this study (perhaps as a result of higher coverage), we

propose that inaccuracies in the genomes sequenced

with Solid Technology might explain the bulk of the

difference.

In the hope of learning about the demography of Native

American groups, we applied this approach to partitioned
5, 2012



Figure 5. Distribution of Inferred TMRCA

The distribution of inferred TMRCA is calculated in 10 kb windows scaled with chimpanzee divergence and is shown for (A) eight pop-
ulations and (B) local ancestry inMXL. The lines indicatemeans, and the shading represents 95% confidence intervals for each bin deter-
mined from the samples depicted in Figure 1.
admixed genomes, including Native American genomic

segments inferred from the MXL samples and African

segments from the ASW samples (Figure 6B and

Figure S4). To avoid biases due to errors in phasing variants

discovered by sequencing, we limited our analysis to

segments of double African, double Native American, or

double European ancestries, and it is therefore noisier

than results based on whole genomes. On the basis of indi-

vidual admixed African American genomes, we were able

to recover the histories inferred from African and European

individuals. Applying the same method to segments of in-

ferred Native American ancestry, we found in the Native

American ancestral population evidence of a strong bottle-

neck of a magnitude comparable to that observed in Euro-

pean and Asian groups. The PSMC method does not allow

for accurate inferences over the last ~25,000 years, and

recent differences in demography are therefore not distin-

guished by this method. The development ofmethods that

can handle many individuals is therefore highly desirable

for resolving many questions about recent human demog-

raphy, including past populations whose descendents have

had complex admixture histories.

Impact of Ancestry on Patterns of Deleterious

Variation

Demography impacts the relative allele-frequency distribu-

tion of neutral and functional alleles. Populations that

have undergone bottlenecks followed by growth, for

example, are expected to have fewer segregating sites, pro-

portionally more segregating deleterious variants,4 and

a higher proportion of rare genetic variants than

a constant-sized population. To facilitate comparison

across all panel populations, we focused on the distribu-

tion of heterozygous and homozygous nonreference alleles
The Americ
within individuals (i.e., the two-chromosome frequency

spectrum) and its variation across ancestry and functional

class. Focusing on amino-acid-changing variants, we ob-

tained counts CountsAZP of variants in bins defined by

ancestry A (e.g., ASW, CEU, CHB, etc.), zygosity Z (homo-

zygous nonreference or heterozygous), and PolyPhen2-

predicted functional impact P (benign, possibly damaging,

or probably damaging30). Obtaining a mechanistic model

accounting for the joint effects of population size fluctua-

tions, selection, and gene flow is challenging. As a simple

alternative, we considered different generalized linear

models for CountsAZP . The basic, fully saturated model

has the form

LogðCountsAZPÞ ¼ bþ bA þ bZ þ bP þ bAZ þ bAP þ bZP þ bAZP;

where b represents fitting parameters (see Appendix SB for

model details and additional motivation). A first observa-

tion is that the linear and pairwise interaction terms do

not provide a satisfactory description of the data and

that bAZP terms are highly significant: when compared to

the ASW population, the out-of-Africa panels CEU, CHB,

GIH, JPT, and TSI are expected to exhibit increased homo-

zygosity and increased PolyPhen deleterious alleles

(Figure 7). In addition, we found that the increase in prob-

ably damaging variants is more pronounced among homo-

zygous sites (all p < 0.00036, see Supplemental Data and

Appendix SB). Thus, the expected proportion of recessive

variants among out-of-Africa populations not only is

higher than what would be predicted by the increase of

homozygosity alone and by the larger number of delete-

rious variants alone but is also larger than what would be

predicted on the basis of a product of the two effects.

This effect also holds if we consider the inferred diploid
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Figure 7. Interaction Coefficients Inferred for a Model of Dele-
terious Variant Counts
Estimated values for bAZP , the interaction term representing joint
effects of population ancestry, zygosity, and PolyPhen status on
the counts of variants, are shown for Z ¼ ‘‘homozygous’’ and
p ¼ ‘‘probably damaging’’ for each population. Coefficient values
(A) are given relative to counts in the ASW population. Z scores
of coefficient significance are given in (B). The dashed line corre-
sponds to p ¼ 0.01.

Figure 6. Demographic History Inferred with PSMC
Estimates of effective population size over time are shown for (A)
11 populations and (B) three ancestries on the basis of local-
ancestry inference in three populations with the use of PSMC,
which estimates effective population sizes at different time inter-
vals on the basis of the distribution of TMRCA estimates across
the genome. Lines represent mean values obtained from separate
analysis of each sample.
local ancestries in admixed genomes; segments of either

double Native American, double European, or joint Native

American and European ancestries show excesses of homo-

zygous probably damaging variants (all p < 7.23 10�6, see

Supplemental Data).

We can also use the GLM model to test whether the in-

ferred local ancestries provide a complete description of

the observed patterns of diversity in the admixed genomes

from different populations. Interestingly, we found that an

additional term, bPOP(I)Z, describing the effect of the popu-

lation-of-origin pop(I) on the CountsIAZP per individual in

the admixed populations, leads to an AIC (Akaike informa-

tion criterion) improvement of 57. We thus found that

African Americans have the highest degree of heterozy-

gosity and are followed by the PUR and the MXL groups

even after the effects of global ancestry proportions have

been taken into account (Table S7). This can indeed be

observed in Figure 1: the heterozygosity in African Ameri-

cans is higher than that of the MXL samples for all inferred

local-ancestry categories. Importantly, these effects are

consistent across individuals from a given population: add-

ing individual-level terms bIZ does not provide significant

improvement to the fit, and indeed, the inferred bIZ terms
668 The American Journal of Human Genetics 91, 660–671, October
are very similar for different individuals in the same

ancestry. (Table S8)
Discussion

Human-population history, including prehistoric migra-

tions and population-size changes, as well as more recent

migrations induced by exogenous settlement of territories

in the Americas, Australia, Africa, and Asia, have

profoundly affected the distribution of genetic variation

around the world. An open question is the degree to which

individual-level data can be used for drawing inferences

regarding these population-level processes. By analyzing

full-genome sequence data from 50 individuals across 14

populations, we demonstrate that personal genomic data

recapitulates key aspects of the population history from

which the genomes were drawn. This includes ancient

demographic events (such as the out-of-Africa bottleneck),

as well as the muchmore recent ‘‘personal genetic history’’
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of admixed genomes with regard to the proportion of

ancestry drawn from different ancestral populations and

a broad outline of the history of how admixture occurred.

Simulations suggest that the inference strategy we have

used is accurate for the Mexican, Puerto Rican, and African

American populations studied here.

Many of our analyses of individual human genomes

recapitulated what has been learned through decades of

sequencing population-based samples. For example, we

found that human genomes vary by nearly 50% in the

degree of nucleotide heterozygosity and that west African

genomes are vastly more diverse than non-African

genomes. We also found, surprisingly, that the proportion

of homozygous versus heterozygous benign, possibly, and

probably damaging alleles annotated per genome is highly

consistent for genomes from the same population and

differs dramatically across genomes from different popula-

tions. Furthermore, the generalized linear model we intro-

duce emphasizes subtle differences in heterozygosity

between segments of identical continental ancestry in

different populations; ASW samples showed the highest

overall heterozygosity after continental ancestry was

factored in. This observation is consistent with proportion-

ally less inbreeding in the ASW population. It is also

possible that the European, African, and Native American

source populations for the ASW samples happened to

have higher diversity than the corresponding MXL source

populations. Finally, at this level of accuracy, wemight also

be detecting small levels of misassigned ancestry, which

would tend to increase diversity across all ancestry cate-

gories in populations with more west African ancestry.

We have found that we can reliably reconstruct the

continental ancestry along genomes of individuals with

admixed ancestry as evidenced both by simulations that

show an accuracy rate of 80%–99% for local-ancestry

assignment and by the consistency of nucleotide diversity

among inferred genomic segments (Figure 1). For example,

the amount of genetic diversity in segments of African

ancestry in African Americans resembles that of sequenced

west African populations (~0.1% nucleotide heterozy-

gosity, ~5% novel alleles relative to the 1000 Genomes

Pilot Project, and 1.5 SNPs per kilobase), and similarly,

the segments of inferred European ancestry in African

Americans and Mexicans resemble those of sequenced

west European populations (~0.07% nucleotide heterozy-

gosity, 2% novelty rate relative to the 1000 Genomes Pilot

Project, and one SNP per kilobase). This gives us confi-

dence that the results we present for Native American

ancestry provide useful information about the genomic

diversity of this ancestry, for which sequence data were

not available. Such an approach will be useful in the study

of the numerous historical populations whose descendents

share ancestors with diverged populations.

Using a generalized linear model to study the distribu-

tion of predicted deleterious or benign alleles, we found

that demographic history and natural selection have had

a complex interplay to pattern genomes from diverse
The Americ
human populations. Our results from 50 sequenced

human genomes are consistent with deep exome data10

and genome-wide population-genetics analyses42,43 that

suggest that negative selection is the predominant mode

of selection in functional regions of the human genome.

Aside from characteristics of the source populations, we

have examined the genomic diversity of the admixed pop-

ulation themselves. Genome-wide statistics of the admixed

individuals are consistent with models of their genomes as

mosaics of segments from the diverged populations. An

important consequence for population-genomics analysis

is the observation that the allele-frequency distribution

had more rare variants than expected under a uniform

population. Additionally, we show that the mosaic

ancestry patterns themselves provide information specific

to recent gene-flow intensities. Using detailed gene-flow

models, we have obtained evidence for continuous gene

flow in both African Americans and Mexicans, resolving

an apparent inconsistency observed in previous studies

assuming a discrete gene-flow event.

The analysis we have presented here integrated trio-

phased genotype data from source-population proxies

and the admixed populations, as well as full sequence

data from admixed individuals. One limitation of the

current analysis was the difficulty of accurately phasing

rare variants obtained in the sequence data. We expect

that the availability of such phased data (through trio

sequencing or new experimental approaches44,45) will

considerably increase the power of inferences for events

both prior and posterior to the gene flow.

As the medical community continues to expand its

efforts to increase the representation of diverse populations

and as the availability of whole-genome sequence data

increases, the need for detailed and quantitative models

for interpreting and modeling admixed genomes will

increase. Many of the standard population-genetics tools

do not apply directly to such populations, but we have

shown that the application of local-ancestry inference can

provide a simple basis for developing tractable extensions

of standard methods for learning about complex demo-

graphic events in recently admixed populations.
Supplemental Data

Supplemental Data include six figures, eight tables, and supple-

mental appendices giving sensitivity and specificity results based

on simulations and can be found with this article online at

http://www.cell.com/AJHG.
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