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ABSTRACT: The need for improved algorithmic support for variant prioritization and disease-gene identification in per-
sonal genomes data is widely acknowledged. We previously presented the Variant Annotation, Analysis, and Search Tool
(VAAST), which employs an aggregative variant association test that combines both amino acid substitution (AAS) and allele
frequencies. Here we describe and benchmark VAAST 2.0, which uses a novel conservation-controlled AAS matrix (CASM),
to incorporate information about phylogenetic conservation. We show that the CASM approach improves VAAST’s variant
prioritization accuracy compared to its previous implementation, and compared to SIFT, PolyPhen-2, and MutationTaster.
We also show that VAAST 2.0 outperforms KBAC, WSS, SKAT, and variable threshold (VT) using published case-control
datasets for Crohn disease (NOD2), hypertriglyceridemia (LPL), and breast cancer (CHEK2). VAAST 2.0 also improves
search accuracy on simulated datasets across a wide range of allele frequencies, population-attributable disease risks, and al-
lelic heterogeneity, factors that compromise the accuracies of other aggregative variant association tests. We also demonstrate
that, although most aggregative variant association tests are designed for common genetic diseases, these tests can be easily
adopted as rare Mendelian disease-gene finders with a simple ranking-by-statistical-significance protocol, and the performance
compares very favorably to state-of-art filtering approaches. The latter, despite their popularity, have suboptimal performance
especially with the increasing case sample size.
Genet Epidemiol 37:622–634, 2013. C© 2013 Wiley Periodicals, Inc.
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Introduction

Traditionally, genome-wide association studies (GWASs)
have been used to identify disease-associated variants using
sets of “tagging” single-nucleotide polymorphisms (SNPs)
distributed across the genome. GWAS approaches, however,
are underpowered to detect the effects of rare casual vari-
ants because they are usually in poor linkage disequilibrium
with the tagging SNPs [Visscher et al., 2012]. New sequencing
technologies have significantly reduced the price of human
genome resequencing, and are identifying many novel rare
variants. The classification and prioritization of these rare
variants for disease-gene studies has thus become a signifi-
cant problem.

To date, several variant prioritization tools have been devel-
oped to identify damaging alleles in personal genomes data.
SIFT [Ng and Henikoff, 2006] and AlignGV-GD [Tavtigian
et al., 2006], for example, use multiple alignments to as-
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say conservation levels of novel amino acid changing vari-
ants with the underlying assumption that sequence variants,
which alter highly conserved positions in protein sequences
are a priori more likely to be damaging. Two more recently
published algorithms, PolyPhen-2 [Adzhubei et al., 2010]
and MutationTaster [Schwarz et al., 2010], improve upon
this basic approach, integrating other information (e.g., pro-
tein structural changes) into the calculation, and thus sig-
nificantly improving their variation prioritization accuracies
compared to SIFT [Ng and Henikoff, 2006].

A major weakness of many variant prioritization tools is
that they can only prioritize variants within phylogeneti-
cally conserved coding regions and thus have poor coverage
across the proteome. For example, SIFT and PolyPhen can
score only 60% and 81% of the human proteome, respec-
tively [Adzhubei et al., 2010]. Another weakness of these
approaches is that they make no use of allele frequency infor-
mation. It has long been known that minor allele frequency
(MAF) is negatively correlated with purifying selection pres-
sure [Kryukov et al., 2007]. Thus, publicly available human-
genome databases (e.g., HapMap [Thorisson et al., 2005], the
1000 Genomes Project (1KGP) [Altshuler et al., 2010], and
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dbSNP [Smigielski et al., 2000] provide valuable frequency
information that can, in principle, be used for variant pri-
oritization. VAAST [Yandell et al., 2011] is a step forward
in both regards in that it uses an approach to variant classi-
fication that combines both amino acid substitution (AAS)
information with variant frequency information, allowing it
to score all variants no matter where they lie in the genome
and with greater accuracy [Yandell et al., 2011].

The widened scope of the VAAST approach, however,
comes at a cost: VAAST, in its original form, does not
make any use of phylogenetic conservation data. In the
present study, we describe an extension of the VAAST variant
prioritization approach that makes use of a conservation-
controlled AAS matrix (CASM) to overcome this short-
coming. The CASM approach allows VAAST to score every
variant in the genome, and to employ phylogenetic con-
servation information at the same time. Our benchmark
analyses presented here demonstrate that CASM approach
results in the highest variant prioritization accuracies yet
achieved.

Employing rare variants for disease-gene identification is
another challenge. One approach is simply to search case
genomes for regions having an increased density of rare vari-
ants. This is the approach taken by ANNOVAR [Wang et al.,
2010], which allows users to impose a threshold on variant
frequencies as observed in dbSNP or in the 1000 Genomes
Project [Altshuler et al., 2010; Smigielski et al., 2000], ex-
cluding from further consideration variants with popula-
tion frequencies above a user-defined threshold. A strength
of the tool is that it can use third-party variant prioritiza-
tion scores such as those produced by SIFT and PolyPhen to
improve search accuracy; its principle weakness is that ex-
cluding variants with MAFs above a user-defined threshold
renders the tool ineffective for searching datasets containing
disease-causing alleles distributed across a range of popula-
tion frequencies. In response, probabilistic approaches that
overcome this limitation have emerged. These tests aggregate
prioritization information from each variant in a gene to
achieve greater statistical power, allowing them to bypass the
need for large statistical corrections for multiple tests. These
tools include CAST [Morgenthaler and Thilly, 2007], CMC
[Li and Leal, 2008], WSS [Madsen and Browning, 2009],
KBAC [Liu and Leal, 2010], VT [Price et al., 2010], SKAT [Wu
et al., 2011], and VAAST [Yandell et al., 2011]. Although each
algorithm approaches the problem differently, all either ex-
plicitly or implicitly use the MAF information to weight vari-
ants. In addition, VT and VAAST 2.0 can also use functional
predictions from third-party variant prioritization tools such
as PolyPhen and PhastCons [Yang, 1995] to weight variants
[Price et al., 2010]. We refer to these approaches collectively
as aggregative variant association tests.

To date, aggregative variant association tests have been
seen as a means to identify genes and variants associated with
common diseases. However, the performance characteristics
of different association tests as rare disease gene finders are
still largely unknown. Also largely undetermined to date is
the impact of factors such as population attributable risk

(PAR) and allelic and locus heterogeneity on their ability
to identify genes and alleles responsible for both rare and
common disease [Madsen and Browning, 2009].

Here we describe the new version of VAAST (VAAST 2.0)
and the CASM approach. We employ a variety of datasets
to benchmark VAAST 2.0, systematically comparing its per-
formance to the original version of VAAST [Yandell et al.,
2011] and to other published association tests, including
WSS [Madsen and Browning, 2009], KBAC [Liu and Leal,
2010], SKAT [Wu et al., 2011], and VT [Price et al., 2010].
Our results demonstrate the improvements to VAAST made
possible by the CASM approach; they also provide a gen-
eral framework with which to investigate the performance
of different aggregative variant association tests using pub-
lished and simulated datasets. These results shed consider-
able light on the complexities involved in searching personal
genomes data for disease-causing alleles as they reveal un-
expected strengths and weaknesses of different approaches
under different scenarios, providing a roadmap for future
improvements to each method.

Materials and Methods

The CASM Approach

VAAST uses an extended composite likelihood ratio test
(CLRT) to determine a severity score for genomic variants
[Yandell et al., 2011]. The null model of the CLRT states that
the frequency of a variant or variant group is the same in the
control population (background genomes) and case popu-
lation (target genomes), while the alternative model allows
these two frequencies to differ. Under a binomial distribu-
tion, the likelihood for both models can be calculated based
on observed allele frequencies in the control and case datasets.
In VAAST 1.0 this likelihood ratio (LR) is further updated
by the AAS severity parameter (ai/hi), where hi is the likeli-
hood that an AAS does not contribute to the disease and ai is
the likelihood that it does. We estimate hi by setting it equal
to the frequency of this type of amino acid change in the
background population, and ai by setting it equal to the fre-
quency of the amino acid change among all disease-causing
mutations in OMIM. VAAST 1.0 uses (ai/hi) to model the
severity of each amino acid change. This approach, however,
does not take into account phylogenetic conservation at that
position of the protein, which can in theory be used to im-
prove the accuracy of (ai/hi). In VAAST 2.0, we have extended
this severity parameter by using an additional conservation
measurement, PhastCons [Yang, 1995] scores; these scores
estimate the probability that the locus is under negative se-
lection and are calculated using multiple species nucleotide
alignments.

The CASM operates as follows: Consider first, a variant oc-
curring at a position in the genome having some PhastCons
score, and changing a valine (V) to an alanine (A). To calculate
the severity parameter, we first calculate the relative frequen-
cies of V to A causing variants at any conservation level within
a disease and a nondamaging variant database. In practice,
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this approach is hindered by the fact that the number of such
variants in the disease database may be limited. To overcome
this problem, we start with estimating (ai/hi) for each type
of amino acid with PhastCons scores of 0 and 1 (the two end
points), as follows. For any given type of AAS i (i = 1, 2, . . . ,
m), suppose that there are ni variants in the disease database
and each variant j (j = 1, 2, . . . , ni) has a PhastCons score of
Pij. Because Pij can be interpreted as the probability that the
variant is at a conserved locus [Yang, 1995], the likelihood
that a variant is disease causing can be estimated by

ai1 =

⎛
⎝ ni∑

j =1

Pij

⎞
⎠ /

CD (1)

for variants with a PhastCons score of 1, and

ai0 =

⎛
⎝ ni∑

j =1

1 – Pij

⎞
⎠

/
CD (2)

for variants with a PhastCons score of 0, where CD is the total
number of variants in the disease allele database used for
training. Similarly using a database of nondamaging variants,
the likelihood that a variant is not disease causing can be
estimated by

hi1 =

⎛
⎝ ni∑

j =1

Pij

⎞
⎠ /

CN (3)

for variants with a PhastCons score of 1, and

hi0 =

⎛
⎝ ni∑

j =1

1 – Pij

⎞
⎠ /

CN (4)

for variants with a PhastCons score of 0, where CN is the total
number of variants in the nondamaging allele database used
for training.

Thus, the severity parameter for AAS type i with a Phast-
Cons score of 0 and 1 is (ai0/hi0) and (ai1/hi1), respectively.
For variants with other PhastCons scores (x; 0< x <1), the
likelihood is estimated by a linear combination of (ai0/hi0)
and (ai1/hi1), namely,

aix

hix
=

ai0

hi0
× (1 – x) +

ai1

hi1
× x, (5)

where aix/hix are the terms in the CASM. This provides an
estimate of LR of a given amino acid change being disease-
causal vs. being nondamaging, controlled for the phyloge-
netic conservation level in the gene context. The procedures
for training and testing the CASM method are detailed in the
Supporting Information.

Unless otherwise noted, we calculated the severity parame-
ter using variants from the Human Gene Mutation Database
(HGMD) [Cooper et al., 1998] as disease variants and us-
ing variants from the 1000 Genomes Project (Phase I data)
[Altshuler et al., 2010] with MAFs 3 0.05 as the nondamag-
ing variants. We first evaluated CASM on a small test dataset
using PhastCons scores from three different genome align-
ments: UCSC vertebrate, mammal, and primate [Karolchik

et al., 2004]. The vertebrate alignment produced the most ac-
curate CASM scores and was used in all subsequent analyses.

Indel Support in VAAST 2.0

VAAST 2.0 also supports small insertion and deletion (in-
del) mutations. The VAAST Annotation Tool, a component
of VAAST package [Reese et al., 2010; Yandell et al., 2011] now
annotates the functional impact of indels on protein-coding
genes in GVF format [Reese et al., 2010]. These annotations
include (1) determination of whether or not the indel dis-
rupts the reading frame of one or more protein-coding genes
and if so which ones; and (2) whether the indel causes an AAS,
insertion, or deletion. VAAST 2.0 then scores indels with the
same CLRT as single-nucleotide variants (SNVs) that is, it
calculates the LR of null model vs. alternative model for each
indel variant based on its observed allele frequencies in back-
ground and target genomes, and then updates the LR with the
severity parameter (ai/hi), which is estimated as follows. First,
indels are classified into categories based on three properties:
(1) whether it is an insertion or a deletion, (2) the affected
nucleotide length, and (3) whether it disrupts the protein
translation reading frame. For each category of indels, we
calculate the proportion of HGMD variants falling into this
category, which is our estimate of disease-causal likelihood.
We also use a nondamaging variant database to determine
the likelihood of being noncausal for each category. The ratio
of these two likelihoods is used as (ai/hi) term to update the
original LR. Note that rare indel variants are collapsed be-
fore being scored, as described in Yandell et al. [2011]. This
is especially important for indels, because the exact bound-
aries of indel variants are often called imprecisely. Collapsing
variants thus allows VAAST to assess the impact of multiple
overlapping indels in the cases.

Results

Variant Prioritization

We compared the performance of VAAST 2.0 to other vari-
ant classifiers. Whereas tools such as SIFT, PolyPhen, and
Align-GD [Adzhubei et al., 2010; Ng and Henikoff, 2006;
Tavtigian et al., 2006] cannot score regions lacking mul-
tiple sequence alignment information, VAAST 2.0 suffers
from no such limitation. In regions where no nucleotide
or protein conservation data are available, VAAST 2.0 uses
allele frequencies and global amino acid substation frequen-
cies as the basis for variant prioritization; in regions where
conservation information is available, VAAST 2.0 supple-
ments this information with PhastCons scores [Yang, 1995],
which cover 99.9% of the human proteome. For this com-
parison, we limited our benchmark analysis to variants that
can be scored by all four algorithms (SIFT, PolyPhen-2, Mu-
tationTaster, and VAAST 2.0). It should be kept in mind,
however, that in addition to these, VAAST can also score
many other variants in these datasets that the other tools
cannot.
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Figure 1. Receiver operator curves (ROC) for the variant prioritization tools. Shown are ROCs for VAAST 1.0, VAAST 2.0, CASM, SIFT, PolyPhen-2,
and MutationTaster, using two benchmark datasets: (A) common and rare variants from HGMD and 1000 Genomes Project; (B) BRCA1 and BRCA2
rare variant set. x-axis: false-positive rate; y-axis: true positive rate. Dashed line denotes the false-positive rate of 0.05.
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To evaluate the prioritization performance of each tool, we
plotted the Receiver Operator Curve for each algorithm us-
ing a set of nondamaging variants (drawn randomly from
the 1000 genomes project (1KGP) Pilot Phase [Altshuler
et al., 2010]) and a set of disease-causal variants (from
HGMD database) (see Supporting Information for details).
Figure 1A demonstrates that the accuracy of VAAST 2.0 and
1.0 is considerably better than the other algorithms, with
the true positive rate (TPR) reaching 76% for VAAST 2.0
and 68% for VAAST 1.0 when the false-positive rate (FPR)
is 5%. The third best tool is MutationTaster, whose TPR is
23% lower than VAAST 2.0 at the same FPR level. VAAST 2.0
using the CASM method alone without recourse to variant
frequency information (“CASM” in Fig. 1) is the fourth best
performing approach, followed by PolyPhen-2 and SIFT. We
also calculated the area under the curve value and the accu-
racy at FPR = 0.05 for each algorithm, which demonstrates
the same trends (Table 1).

For a second variant prioritization benchmark, we com-
pared the performance of each of these algorithms using a
set of 143 rare missense variants in the BRCA1 and BRCA2
genes whose clinical significance was assessed by a third
party [Easton et al., 2007]. This variant set differs from the
HGMD/1KGP variants used to produce Figure 1A in that
the dataset used to produce Figure 1A contains both com-
mon and rare variants for nondamaging and deleterious al-
leles, whereas this set Figure 1B only contains very rare vari-
ants (MAF << 1%). The results of this benchmark analysis
are shown in Figure 1B and Table 1. Because majority of
the variants in this set are observed only once, VAAST 2.0
cannot use the allele frequency information to improve its
power, thus the performance of the full VAAST 2.0 algorithm
is only marginally better than the CASM method alone in
this case. Nevertheless, by a small margin, VAAST 2.0 is still
the most accurate classifier. At FPR = 0.05, the accuracy of
VAAST 2.0 is 4% higher than MutationTaster, the next best
classifier.

The variant prioritization accuracies of VAAST 1.0 and
2.0 on the HGMD/1KGP dataset (Fig. 1A and Table 1) are
very similar. This is because, on this dataset, both algorithms
derive most of their power from variant MAF information
in a control population. However, in cases where such in-
formation is unavailable (e.g., all variants are equally rare),
the accuracy of VAAST 1.0 drops, while VAAST 2.0 still ac-
curately predicts the severity of variants using the CASM
method. This is illustrated by the BRCA variants benchmark
dataset in Figure 1B and Table 1.

Table 2. Characteristics of the NOD2, LPL, and CHEK2 datasets

Average number Number of Number of
of variants variants with unique multisite

per case genome odds ratio >1 genotypes PARa

NOD2 1.19 27 566 44.7%
LPL 0.10 10 14 8.4%
CHEK2 0.05 22 30 3.81%

a The population attributable risk (PAR) is calculated as the sum of PAR values of
all susceptibility variants.

Benchmark Analyses on Multigenic Common Diseases

Next we compared the power of six aggregative variant as-
sociation tests using three different published sequence-based
disease-gene datasets. The three datasets used are NOD2, im-
plicated in Crohn disease [Lesage et al., 2002]; LPL, impli-
cated in hypertriglyceridemia [Johansen et al., 2010]; and
CHEK2, a gene involved in breast cancer [Le Calvez-Kelm
et al., 2011]. In the NOD2 dataset, both rare and common
variants are present, while only rare variants (MAF < 0.05)
are present in the LPL and CHEK2 dataset. In each study, ei-
ther genotype or allele frequency data has been reported for
diseased and control individuals. In the latter case, genotypes
for case and control genomes were simulated, assuming no
linkage disequilibrium between variants. Summary statistics
for each of the three datasets are presented in Table 2. We
calculated power using a bootstrap approach. Specifically, we
sampled cases and controls with replacement, evaluating the
proportion of the resampled datasets that achieved statisti-
cal significance [Yandell et al., 2011]. We used a genome-
wide significance level of 2.4 × 10–6 for NOD2 and LPL. For
CHEK2, we set the significance level to 0.0005 for CHEK2 in
concordance with the original study [Le Calvez-Kelm et al.,
2011].

In all three datasets VAAST 2.0 is consistently the most pow-
erful association test (Fig. 2). For LPL, for example, at a sam-
ple size of 400, VAAST 2.0 has 10% more power than VAAST
1.0 (second) and 25% more power than KBAC (third); For
CHEK2, VAAST 2.0 has 3% more power than VAAST 1.0 at
its maximal sample size and 9% more than KBAC (third);
for NOD2, the power of VAAST 2.0 is 4% better than VAAST
1.0 and 9% better than WSS (third). Each of the other algo-
rithms seems to have a niche. KBAC, for example, performs
well on the two datasets (LPL, CHEK2) where only rare vari-
ants contribute to the disease, but its performance drops sig-
nificantly where both common and rare causal variants are
present (e.g., NOD2). WSS, on the other hand, performs well
under both scenarios, and outperforms KBAC, SKAT, and

Table 1. Variant prioritization performance benchmarks

VAAST1.0 VAAST2.0 CASM SIFT PolyPhen-2 MutationTaster

Area under the curve (AUC)
Dataset 1 (HGMD+1KGP) 0.95 0.96 0.83 0.76 0.8 0.87
Dataset 2 (rare BRCA variants) 0.68 0.87 0.86 0.73 0.76 0.85

Accuracy at FPR of 0.05
Dataset 1 (HGMD+1KGP) 0.81 0.86 0.68 0.57 0.62 0.74
Dataset 2 (rare BRCA variants) 0.53 0.72 0.72 0.52 0.62 0.68
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Figure 2. Power comparisons over three published common disease
datasets. (A) NOD2, (B) LPL, (C) CHEK2. The x-axis shows the number of
case genomes and the y-axis shows the statistical power. The power is
calculated based on 100 bootstraps.

Table 3. Significance of associations (showing P-values)
between low triglyceride levels and rare variants in the ANGPTL4
gene

VAAST1.0 VAAST2.0 KBAC SKAT VTa WSS

0.000371 0.000508 0.00402 0.00677 0.00452 0.00402

a VT is run with PolyPhen-2 scores.

VT when common variants are observed (e.g., the NOD2
data).

We also benchmarked VAAST 2.0 on the Dallas Heart
Study dataset [Romeo et al., 2009], in which rare variants
in ANGPTL4 gene were found to be associated with low
triglyceride levels within 3,551 sequenced individuals. For
this study, we tested for different distributions of rare variants
in ANGPTL4 gene between the highest quartile and lowest
quartile of triglyceride levels in the 3,551 individuals. Eth-
nicity and gender status are matched, in accordance with the
original study [Romeo et al., 2009]. For this benchmark ex-
periment, we did not use a bootstrap approach, because the
original study did not report the ethnicities and gender infor-
mation for each individual and as a result we cannot re-create
a balanced experimental sampling design using bootstraps.
The uncorrected significance values for each test are reported
in Table 3. All the tests, obtained a P < 0.05. Consistent with
our other benchmarks, VAAST 1.0 and VAAST 2.0 obtained
the lowest P-value.

Benchmark Analyses on Simulated Datasets

Simulated datasets provide an opportunity to investi-
gate the performance of different approaches on datasets
presenting specific challenges; for example, under various
PARs or under different degrees of allelic heterogeneity,
and in a controlled fashion. For these reasons, we used a
previously published simulation framework [Madsen and
Browning, 2009] to compare the power of six aggregative
variant association tests (see Supporting Information for
details).

We first benchmarked the power of these tests under dif-
ferent aggregated PAR [Madsen and Browning, 2009] values,
which reflects the aggregated disease risk of all simulated
mutations. These results are shown in Figure 3. Under a
dominant model, VAAST 2.0 rapidly achieves 80% power
with PARs less than 0.04, and achieves a power of 100%
when PAR = 0.05. The power of VAAST 2.0 is followed by
VAAST 1.0 and VT, both of which exhibit 10–15% lower
power than VAAST 2.0 before reaching 80% power. In con-
trast, SKAT reached 80% power around PAR = 0.06 and WSS
after PAR = 0.07. This trend is also seen in the recessive in-
herence scenario at various PARs (Fig. 3B). Note that in this
experiment we assumed an equal number of causal and non-
causal mutation sites, but we also explored other proportions
(Fig. 4).

Both VAAST 2.0 and WSS can use user-specified inheri-
tance models (e.g., dominant or recessive) to boost power.
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Figure 3. Impact of PAR. Shown is the power of six association tests under different total population attributable risk (PAR) levels. x-axis shows
the total PAR values from all contributing variants; y-axis shows the statistical power based on 100 bootstraps. (A) Dominant model, (B) recessive
model. The number of cases and control are set at 1,000, with the number of disease-causal alleles and noncausal alleles both fixed at 50.
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Figure 4. Impact of different proportions of deleterious mutation sites
contributing to the disease risk. x-axis is the proportion of deleterious
mutation sites among all simulated sites; y-axis statistical power. (A)
Dominant model; (B) recessive model. Total PAR is fixed at 10%; the
numbers of case/controls are set at 500; the number of casual variants
is 50 with varying number of noncasual variants.

However, for the analyses presented in Figure 3, we did not
invoke these options, as (1) the other tests have no such func-
tionalities and (2) the mode of inheritance model is not al-
ways known. In the published WSS manuscript [Madsen and
Browning, 2009] where genetic model information is used,
WSS achieves 80% power at PAR = 0.05 under the recessive
model; in contrast, even without genetic model information
VAAST 2.0 has a power of 97% at PAR = 0.05.

Next we explored the effect of increasing the number of
disease-causal variants (ND) while holding PAR constant in
order to model the impact of allelic heterogeneity on the per-
formance of the different algorithms. These results are shown
in Figure 5. The actual number of observed causal variant
sites per individual is reported in supplementary Table S1.
As can be seen, as ND increases, each variant’s risk contribu-

tion decreases, along with power. For example, under both
dominant and recessive inheritance models, when the num-
ber of deleterious variants is 150, each individual variant will
only have a PAR of 0.07%. Under this model, both VAAST
1.0 and VAAST 2.0 have greater than 80% power. VT with
PolyPhen2 scores seems robust to increasing ND values until
ND is greater than 100. For SKAT, the power dropped be-
low 80% between ND of 50 and 100 under dominant model
and around 50 under recessive model. KBAC and WSS are
less robust to increasing ND than the other methods. We
summarize the number of cases/controls required for each
algorithm to achieve 80% power in Table 4 for ND = 5 and
ND = 50.

WSS generally performed quite well, and in many cases
outperformed KBAC. We note that the opposite behavior
is reported in Liu and Leal [2010]. We believe differences
in allelic heterogeneity are responsible for this discrepancy.
Because KBAC calculates the sample risk for each multi-
site genotype, in cases where many different casual alleles or
common casual alleles are present, the number of multisite
genotypes grows rapidly, with a concomitant loss in power.
This behavior can be seen quite clearly in Figure 5. Consis-
tent with this hypothesis, KBAC performs well on the CHEK2
and LPL datasets, but does much worse on the NOD2 data,
likely because NOD2 contains the highest number of multisite
genotypes (Table 2). We tested this hypothesis by comparing
the power of WSS and KBAC under different numbers of
deleterious alleles (supplementary Fig. S2, Table S2). When
ND = 2 and there are less than 10 multisite genotypes, KBAC
has 3–5% more power than WSS before it reaches 80% power.
However, as the number of multisite genotypes increases with
ND, KBAC gradually looses power, and when there are more
than 40 multisite genotypes, the power of KBAC is severely
compromised. This result is consistent with its performance
on the LPL, NOD2, and CHEK2 datasets, suggesting that
KBAC is probably best suited for analyses of datasets where
the number of distinct multisite genotypes is not large, as
demonstrated in Figures 2 and 5.

Benchmark Analyses on Rare Mendelian Diseases

VAAST was designed to be a general-purpose disease-gene
finder capable of identifying both rare and common alleles
responsible for both rare and common diseases [Rope et al.,
2011; Yandell et al., 2011]. Although the majority of aggrega-
tive variant association tests have been designed for common
genetic diseases, there is no a priori reason that they can-
not be applied to rare Mendelian diseases. To this end, we
benchmarked the six aggregative variant association tests us-
ing the benchmarking pipeline from Yandell et al. [2011].
Briefly, this pipeline was employed to randomly select 100
Mendelian disease causal genes from the OMIM database,
where each gene has at least six disease-causal variants. For
each of these genes, we inserted published, disease-causing
variants into from one to three healthy Caucasian genomes
sequenced on the Complete Genomics platform [Drmanac
et al., 2010] in order to simulate diseased individuals. For the
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Figure 5. Impact of differing numbers of deleterious mutation sites. x-axis is the number of deleterious mutation sites (ND); y-axis shows the
statistical power based on 100 bootstraps. (A) Dominant model, (B) recessive model. The number of cases and control are set at 500, and the total
PAR value is set at 10%.

dominant scenario, we inserted a different single allele into
each case genome; for the recessive scenario, we inserted two
different alleles into each case genome.

All protein-coding genes are ranked according to the signif-
icance of associations between genotypes and dichotomous
disease phenotypes. To our knowledge this is the first time
that a benchmark of aggregative variant association tests has
been conducted on rare Mendelian diseases.

The results are shown in Figure 6. Figure 6 reports the
proportion of the 100 OMIM “target” genes falling into four

bins based upon rank; these are bin A: 1–10, bin B: 11–100,
bin C: 101–1,000, and bin D: greater than 1,000 among all
protein coding genes. Supplementary Figure S3 reports the
mean values for these same analyses.

For the dominant disease scenario, with only one case
genome (one individual), VAAST 2.0 ranked 19% of dis-
ease genes among the top 10 candidates genome-wide and
55% as top 100 candidates. Performance improved dramati-
cally as the number of case genomes increases. With only two
case genomes, 79% of disease genes are ranked within top 10,
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Table 4. Numbers cases and controls required for 80% power in
simulationsa

Dominant Recessive

ND = 5 ND = 50 ND = 5 ND = 50

VAAST1.0 150 300 300 500
VAAST2.0 150 300 300 400
KBAC 300 >1,000 800 >1,000
SKAT 200 400 300 600
VT 200 300 400 500
WSS 300 700 800 >1,000

a Total PAR is set at 10%.

genome-wide; with three case genomes, 90% of disease genes
are among top 10. VAAST 2.0’s performance is even better un-
der recessive model. For example, with only one case genome
73% of the disease genes are ranked among top 10, and with
two cases, 97% of the disease genes ranked among top 10.
We note that in this benchmark analysis, the performance
of VAAST 2.0 is very similar to VAAST 1.0 in most cases,
suggesting that the CASM approach improves performance
primarily on datasets containing common causal variants or
complex disease cases.

One of the most intriguing aspects of this analysis is the
general finding that most association tests do well on these
datasets, despite the fact we included common nonsynony-
mous SNVs in this analysis, which is expected to violate the
underlying hypothesis of many burden tests. For example,
using top 10 ranking as an empirical significance level with
a sample size of 3, under the dominant model, VAAST 2.0
achieves 90% power, WSS 82%, and KBAC 73% power. Un-
der recessive model, VAAST 2.0, achieves 100% power, WSS
99%, and KBAC 74% power. These analyses thus make it
clear that some aggregative variant association tests are ex-
cellent rare Mendelian disease-gene finders (e.g., WSS, VT,
and KBAC), despite having been developed for common,
multigenetic diseases. For purposes of comparison, we also
assayed the performance of SIFT and ANNOVAR for rare
disease disease-gene identification [Ng and Henikoff, 2006;
Wang et al., 2010]. As would be expected, SIFT does poorly
compared to the other tests. ANNOVAR, as a state-of-art ap-
proach for the identification of rare Mendelian disease genes,
compares favorably to SIFT but in general does not perform
well relative to association tests (see supplementary Fig. S3).
For example, the power with only one recessive case using
VAAST 2.0 and ANNOVAR are 73% and 14%, respectively.
This indicates filtering based approaches are suboptimal for
the identification of rare Mendelian disorders, when com-
pared to more sophisticated rare-variant association tests.
This is true even when the case sample size is as small as one
genome.

Inflation of FPR in Stratified Populations

A potential problem with disease-gene discovery using
rare-variant association tests is that if cases and controls are
sampled from a stratified population, an inflation of the FPR
can result if the proportion of samples from each subpopula-

tion differs between cases and controls [Nelson et al., 2012].
This situation can occur for a variety of reasons, including
biased sampling procedures and differences in disease inci-
dence rates among subpopulations. To explore the behavior of
rare-variant association tests when cases and controls are not
equally stratified, we simulated case-control data for 1,000
cases and 1,000 controls from the 202 drug target genes pre-
sented in Nelson et al. [2012]. We evaluated three scenarios:
cases and controls from a balanced mixture of two subpopu-
lations (western and northwestern Europeans); modest levels
of imbalance between cases and controls (ratio of western to
northwestern European genomes of 3:7 in controls and 7:3 in
cases), and high levels of imbalance (ratio of 1:9 in controls
and 9:1 in cases). As expected, we did not observe an inflation
of the FPR in the balanced scenario. Most tests behaved rea-
sonably well when the imbalance between controls and cases
was modest, but all tests suffered from substantial FPR in-
flation when the imbalance was high. SKAT can incorporate
demographic information as a covariate matrix, which elim-
inated the population stratification problem (supplementary
Fig. S4). In theory, KBAC can incorporate a covariate matrix
as well, although this functionality is not yet available in the
KBAC public release. VAAST does not currently provide a
solution for this issue. These results indicate that a careful
examination of potential population stratification issues is
warranted in large studies.

Discussion

Phylogenetic conservation is a valuable source of informa-
tion for distinguishing between benign and disease-causing
variation. Determining the best way to make use of this
information—for purposes of variant prioritization and for
association testing—is however, still an open question. Vari-
ant prioritization tools, such as SIFT [Ng and Henikoff, 2006],
use multiple alignments of homologous proteins and judge a
human variant damaging if it alters a highly conserved amino
acid. PolyPhen-2 goes one step further, making use of pro-
tein structural information where available [Adzhubei et al.,
2010]. Because SIFT and PolyPhen-2 rely on conservation
information, they can only score variants at conserved posi-
tions. VAAST 1.0 implemented a different approach. Rather
than evaluating individual columns of multiple alignments in
order to judge the impact of a coding variant, VAAST 1.0 used
the global, genome-wide frequency of observing a given AAS
in any gene, anywhere in the genome. In this regard, the AAS
matrix in VAAST 1.0 shared some similarity to Grantham’s
matrix [Grantham, 1974], which quantifies the property dif-
ferences between amino acid changes, except that VAAST 1.0
empirically estimated the likelihood of being deleterious or
neutral for every AAS using known disease-causing alleles.
This means that VAAST could score every coding change,
regardless of whether or not a particular gene, or that a
particular region of its protein is conserved. Although this
approach casts a wider net, VAAST 1.0 was unable to take ad-
vantage of position-specific conservation information. Thus,
the basic motivation of this work has been to preserve the
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Figure 6. Rankings for 100 different genome-wide searches for known rare disease genes. Panels (A) and (B) shows dominant and recessive
models, respectively. The different colors denote the proportion of the 100 OMIM "target" genes falling into four bins based upon genome-wide rank
(see insert legend), with orange, denoting the percentage cases for which the disease gene was ranked among the top 10 candidates genome-wide.
Dominant and recessive disease scenarios are investigated separately. To model the dominant diseases, one causal variant was inserted into the
gene of interest, and in the recessive cases two different alleles are inserted (per case genome). For each algorithm, three columns are shown,
corresponding one individual, two individuals, and three individuals as cases.

ability to provide informative scores for every coding variant
in the genome while taking advantage of the detailed infor-
mation provided by multiple sequence alignments wherever
they are available. CASM evaluates the global frequency of
AAS in the whole proteome, and thus is still capable of making
an inference even if there are few or no local alignments. Al-
though the PhastCons scores at these positions are less infor-

mative, CASM can still infer severity from type of the amino
acid change. As Figure 1 demonstrates, the CASM approach
provides an effective solution to this problem, granting
VAAST 2.0 a significant advantage in variant prioritization
compared to other state-of-the-art tools.

VAAST 2.0, however, is more than a tool for variant prior-
itization; it is also a tool for genome-wide searches. As such,
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VAAST is one of several aggregative variant association tests
published in the last few years [Li and Leal, 2008; Liu and
Leal, 2010; Madsen and Browning, 2009; Morgenthaler and
Thilly, 2007; Price et al., 2010; Wu et al., 2011]. Although sev-
eral benchmarks have been published [Ladouceur et al., 2012;
Liu and Leal, 2010; Madsen and Browning, 2009; Price et al.,
2010; Wu et al., 2011], ours is the first to systematically com-
pare the performance of these methods across heterogeneous
disease datasets—both real and simulated, and for both com-
mon and rare diseases. VAAST 2.0 consistently outperforms
VAAST 1.0, WSS, VT, KBAC, and SKAT in these analyses, but
performance advantages vary across the datasets. Indeed, an
important conclusion of our benchmarking analyses is that
no single dataset—real or simulated—is sufficient for bench-
marking aggregative variant association tests because of the
complex behaviors exhibited by these tools. Figure 2 provides
an excellent case in point. Collectively, our analyses show how
three basic characteristics of case-control datasets impact the
performance of the different tools. These are (1) the number
of disease-casual alleles; (2) their allele frequencies; and (3)
their collective PAR.

The performance curves for KBAC and SKAT serve to high-
light the general sensitivity of all the association tests to these
three factors. KBAC, for instance, is clearly very sensitive to
numbers of deleterious alleles at a given PAR (Fig. 5). Because
KBAC estimates the sample risk for each unique multisite
genotype, when the number of multisite genotypes is large
and each genotype has a relatively low disease risk, the power
of KBAC is compromised. KBAC’s poor performance on the
NOD2 dataset, compared to its much better power on the
CHEK2 and LPL datasets, further illustrates this behavior.
The NOD2 dataset contains 566 unique multisite genotypes,
including a single common variant (MAF 27.7%) that ex-
plains 47% of the total PAR of this dataset. In contrast, the
LPL and CHEK2 case datasets contain only 14 and 30 distinct
genotypes, respectively (Table 2) and all of their deleterious
variants are rare.

Although SKAT performed well in our simulation studies,
it did less well on the three real datasets. Its performance
on the LPL and CHEK2 datasets, for example, suggest that
SKAT is not well suited for analyses of datasets having mod-
est numbers of casual variants that contribute to a relatively
small total PAR (8.4% for LPL and 3.81% for CHEK2). To test
whether SKATs poor performance on these datasets might be
due to the fact that it does not group low-risk rare variants,
we used VAAST to group variants in LPL and passed this
information to SKAT at run-time. This approach improved
SKAT’s statistical power, from 31% to 45% at maximal sam-
ple size (see supplementary Table S3). The fact that SKAT is
a supervised method, requiring users to choose kernels and
weights, also presents challenges, as the default parameters
can be suboptimal for certain cases. This additional compli-
cation is demonstrated, for example, on the NOD2 dataset.
SKAT’s default weight resulted in low power (<40% at sample
size of 450) because it severely down-weighted common vari-
ants, which contribute to a large proportion of disease risk
in this dataset. For this reason we used a beta weight value of

(1,1) for SKAT for the NOD2 data, which greatly improved
its performance.

In contrast to the other tools, VT and VAAST, when run
on simulated data, exhibited very robust and similar perfor-
mance across a wide range of PARs and allelic heterogeneities,
at varying ratios of disease-causing and neutral alleles, and
under both dominant and recessive modes of inheritance
(Figs. 3–5). These strengths likely result from two features
both tools share in common. First, they directly compare
the variant MAF between cases and controls at each site to
weight variants. Second, they make use of external predictors
of variant function to improve power [Price et al., 2010].

Despite their similar performance characteristics on sim-
ulated data, VAAST outperformed VT on the real datasets.
One possible explanation for this fact is that VAAST 2.0 em-
ploys a more flexible variant-weighting method, one that
does not rely on a priori assumptions about variant severity
and MAF. VT, in contrast, assumes that less frequent variants
are more likely to be deleterious, and that a single optimal
MAF threshold exists. It thus explores all possible thresholds
to find the MAF that maximizes the contrast between cases
and controls [Price et al., 2010]. This assumption is valid for
our simulated datasets, but not necessarily true for the real
disease dataset. Consistent with these observations, VAAST is
the best overall performing tool on every dataset—simulated
and real—demonstrating that VAAST 2.0 can cope effectively
with the diverse parameter spaces that characterize real case-
control datasets.

One limitation of VAAST is that it is currently only
supports the analysis of dichotomous traits in a case-control
study design, while WSS, VT, KBAC, and SKAT support
quantitative traits. For continuous phenotypes, it is possible
to categorize samples into two groups (perhaps using
only phenotypic extremes), although doing so will often
compromise statistical power.

With the exception of VAAST, which has been shown ef-
fective for rare-disease gene searches as well [Rope et al.,
2011], the aggregative variant association tests benchmarked
here were developed to identify genes involved in common
disease. Our analyses demonstrate that these tests are also ap-
plicable to the identification of rare Mendelian disease genes.
For example, WSS, VAAST 2.0, and KBAC ranked the dis-
ease gene in the top 10 genes genome-wide 99%, 100%, and
74% of the time, respectively, using only three case genomes
under a recessive model. The performance compares very
favorably to traditional filtering-based approaches, suggest-
ing the necessity of employing association tests in these
scenarios.

Conclusions

Collectively, our analyses illustrate the unexpectedly com-
plex performance characteristics of aggregative variant
association tests. They also demonstrate that VAAST 2.0
is a powerful disease-gene finder that performs robustly
across a wide variety of simulated and real-world case-control
datasets.
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Software and Data Access

VAAST 2.0 is available for download at http://www.yandell-
lab.org/software/vaast.html with an academic user license.
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